Strategic Prioritisation of WSUD Opportunities

Simon Roberts, Dale Browne

E2DESIGNLAB

The City of Hume is one of Australia's fastest growing and culturally diverse communities and is home to more than 180,000 residents. It extends through upper catchment areas including the township of Sunbury, agricultural land and the fringes of outer suburbs.

The City of Brimbank is a dynamic and rapidly growing municipality of 192,000 residents extending through the mid-catchment areas. It supports both existing residential suburbs and major industrial areas.

The City of Hobsons Bay is home to more than 90,000 residents and significant industrial facilities. It extends along the lower catchment areas and coastline of Port Phillip Bay

MONASH

Purpose

Objectives

- Improve stormwater quality
- Control runoff through retention, retardation and use
- Diversify water supply and maximise use of alternative supplies for resilience

- Increase native vegetation cover for biodiversity and environmental outcomes
- Increase tree canopy cover and soil moisture for human comfort and health
- Improve the quality of recreation spaces

- Improve amenity and liveability value

Process

Step 1 • Catchment prioritisation

Catchment Detox

Process

Step 1 • Catchment prioritisation

Catchment Detox

Step 2

WSUD opportunity identification and assessment

Process

Step 1 • Catchment prioritisation

Catchment Detox

Step 2 • WSUD opportunity identification and assessment

• WSUD concept designs and catchment masterplans

Step 1 Catchment prioritisation

Catchments

Within the study area KOROROIT CREEK LAVERTON CREEK MARIBYRNONG RIVER SKELETON CREEK YARRA RIVER

Upper Maribyrnong: Emu Creek, Blind Creek, Jacksons Creek and Deep Creek

Lower Maribyrnong: Jacksons Creek, Taylors Creek, Arundel Creek and the Maribyrnong River

Kororoit Creek: Mid to lower reaches (exc. Sunbury)

Skeleton Creek

Laverton Creek + Cherry Creek

Stony Creek

Cheetham wetlands

Jawbone Marine Sanctuary

Waterway value

Catchment risk

- \ Assess waterway value
 - Management end point

Emu Creek at Gellies Road

Assess waterway value

- Management end point
- RAMSAR sites and key public destinations

Jawbone Marine Sanctuary

\ Asses catchment risk

– Industrial land use zones

E2DESIGNLAB

Results

E2DESIGNLAB

Results

Catchment management priorities vary based on the *type of values* being protected and the *nature of risks* encountered.

Key characteristic	Management response
Farm land and green wedge	CMA
Growth zones	Apply BPEM and manage for future development through PSPs etc.
Urban areas (standard)	Large scale WSUD retrofit and non-structural solutions

Results

E2DESIGNLAB

Council	Code	Catchment Name
	H_02	Blind Creek
Hume	H_07	Harpers Creek
пише	H_09	Jacksons Creek (middle)
	H_12	Kismet Creek
	B_01	Anderson Road Drain
	B_07	Kororoit Creek (lower 2)
Brimbank	B_12	Maribyrnong River (upper 2)
DHIIDAIIK	B_18	Stenson Road Drain
	B_23	Taylors Creek (lower)
	B_24	Taylors Creek (middle)
	HB_02	Challis Street Main Drain
	HB_06	Kororoit Creek (lower 3)
Hobsons	HB_13	Notla Estate Main Drain
Bay	HB_14	Skeleton Creek
	HB_15	Stony Creek (lower 3)
	HB_16	Yarra River

Step 2 **BASED DESCRIPTION DES**

WSUD opportunities

Step 1: Initial opportunity identification

Prioritisation process

- Step 1: Initial opportunity identification
- Step 2: Detailed opportunity identification

Prioritisation process

- Step 1: Initial opportunity identification
- Step 2: Detailed opportunity identification
- Step 3: Opportunity refinement

Prioritisation process

- Step 1: Initial opportunity identification
- Step 2: Detailed opportunity identification
- Step 3: Opportunity refinement
- Stage 4: Opportunity assessment

- Improve stormwater quality
- Control runoff through retention, retardation and use
- Diversify water supply and maximise use of alternative supplies for resilience

- Increase native vegetation cover for biodiversity and environmental outcomes
- Increase tree canopy cover and soil moisture for human comfort and health
- Improve the quality of recreation spaces

- Improve amenity and liveability value

Green

Increase native vegetation cover for biodiversity and environmental outcomes

Upfront and ongoing costs

\$\$\$

							WSUD Opportunity Assessment Matrix Scores							
WSU	ID Opportunity	Treatmer	nt		Priority Catchment		Costs		BLUE			GREEN		PINK
#	Name	Туре	Area (m²)	Code	Name	Priority Score								
77	_	Wetland	1,800	H_09	Jacksons Creek (middle)	8.7	1.2	0.3	1.1	0.0	2.0	2.0	1./	2.0
117		Wetland	2,480	H_09	Jacksons Creek (middle)	7.2	1.3	0.5	0.6	0.1	2.0	2.0	0.6	2.0
73		Wetland	2,660	H_12	Kismet Creek	7.1	1.4	0.5	0.6	0.0	2.0	2.0	0.5	2.0
72		Wetland	1,410	H_12	Kismet Creek	7.0	1.5	0.3	0.5	0.0	2.0	2.0	0.7	2.0
75		Biofilter	510	H_09	Jacksons Creek (middle)	6.7	1.4	0.3	0.4	0.0	2.0	2.0	0.6	2.0
29		Wetland	2,000	H_09	Jacksons Creek (middle)	6.4	1.8	0.4	0.3	0.0	2.0	2.0	0.0	2.0
51		Biofilter,	620	H_02	Blind Creek	6.1	1.8	0.4	0.1	0.0	2.0	2.0	0.0	2.0
116		Swale	540	H_09	Jacksons Creek (middle)	6.0	2.0	0.2	0.0	0.0	2.0	2.0	0.0	2.0
19		Swale	360	H_09	Jacksons Creek (middle)	6.0	2.0	0.1	0.0	0.0	2.0	2.0	0.0	2.0
66		Biofilter	440	H_02	Blind Creek	5.9	1.7	0.3	0.1	0.0	2.0	2.0	0.0	2.0
64		Wetland	100	н_09	Jacksons Creek (middle)	5.8	2.0	0.0	0.0	0.0	2.0	2.0	0.0	2.0
48		Wetland	1,680	H_02	Blind Creek	5.3	1.9	0.3	0.3	0.0	2.0	2.0	0.1	1.0
65		Wetland	1,850	H_02	Blind Creek	5.1	1.8	0.4	0.2	0.0	2.0	2.0	0.0	1.0
27		Biofilter	550	H_02	Blind Creek	5.1	1.8	0.3	0.2	0.3	2.0	2.0	0.0	1.0
112		Biofilter	340	H_02	Blind Creek	5.0	1.7	0.2	0.2	0.3	2.0	2.0	0.0	1.0
18		Biofilter	670	H_09	Jacksons Creek (middle)	4.8	1.7	0.4	0.1	0.0	2.0	2.0	0.0	1.0
24		Biofilter	410	H_09	Jacksons Creek (middle)	4.7	1.8	0.2	0.1	0.0	2.0	2.0	0.0	1.0
68		Biofilter	880	H_02	Blind Creek	3.7	1.6	0.5	0.1	0.0	2.0	1.0	0.0	1.0
207		Biofilter	640	H_07	Harpers Creek	3.6	1.7	0.4	0.1	0.0	2.0	1.0	0.0	1.0
23		Biofilter	640	H_12	Kismet Creek	3.6	1.7	0.4	0.1	0.0	2.0	1.0	0.0	1.0
69		Biofilter	250	H_02	Blind Creek	3.4	1.8	0.1	0.0	0.0	2.0	1.0	0.0	1.0
67		Biofilter	170	H_02	Blind Creek	3.4	1.9	0.1	0.0	0.0	2.0	1.0	0.0	1.0
76		Biofilter	240	H_09	Jacksons Creek (middle)	2.2	1.9	0.1	0.0	0.0	2.0	1.0	0.0	0.0
119		Wetland	3,290	н_09	Jacksons Creek (middle)	1.8	1.7	0.6	0.4	0.0	1.0	1.0	0.0	0.0
25		Wetland	1,070	н_09	Jacksons Creek (middle)	1.3	1.9	0.2	0.1	0.0	1.0	1.0	0.0	0.0

Step 2 WSUD concept designs and catchment masterplans

Catchment Masterplan

Taylors Creek (lower)

B_23

Catchment Overview

This catchment is heavily urbanised, consisting of large areas of residential development. The areas waterways have been piped, with two large Melbourne Water drains (the Wanaka Drive Drain and Kealba Park Drain) discharging into Taylors Creek on the eastern edge of the catchment. Flooding along the two Melbourne Water drains occurs during large rainfall events. Open space is limited to several unnamed and typically unirrigated pocket parks, however, a major network of open space and sporting grounds is located at Green Gully Reserve along Taylors Creek.

Green Gully Reserve contains a significant Stormwater Harvesting Scheme. The scheme collects water from two drains (including the Kealba Park Drain) before being stored in a holding pond, with a total capacity of 3 million litres (City West Water, 2013). Depending on demand, water is then treated and drawn out for irrigation of the reserves soccer pitches and cricket ovals as needed. The project was officially opened in 2013 and was delivered by City West Water working with Brimbank City Council.

"With seven hectares of public open space under irrigation, the project is expected to result in approximately 41 million litres of water saved each year – the equivalent of 16 Olympic sized swimming pools – and will provide almost three quarters of the reserve's irrigation needs." (City West Water, 2013)

Potable water is still used at Green Gully Reserve and there are plans to increase the number of sporting grounds at the site. As such, there is potential to improve the performance and capacity of the existing stormwater harvesting scheme or augment it with an alternative supply.

Despite Green Gully being one of the largest stormwater harvesting schemes for sports fields, it still only treats a fraction of the catchments runoff and there is potential for further opportunities to be realised upstream.

Catchment Location

Catchment Scorecard

0-4		Score				
Category	Indicator	Catchment B_23	Average ³			
	1.1 - Management end point	2.0	2.0			
Meterusy	1.2 - Ramsar site / key public destination	1.0	1.1			
Waterway Value	1.3 - DCI threshold	1.0	1.7			
value	1.4 - Waterway modification	2.9	2.6			
	Category score ²	4.2	4.9			
	2.1 - Extent of urban development	2.2	1.7			
	2.2 - Road runoff	1.8	1.6			
Catchment	2.3 - Industrial land use	1.0	1.3			
Risk	2.4 - Future urban development	1.0	1.1			
	2.5 - Flood affected properties	1.2	1.1			
	Category score ²	3.0	2.6			

0.5

B_23

¹ Scores range from 1(low value / risk) to 3 (high value / risk). See report body/or explanation of indicator scores.
² Scores range from 1(low value / risk) to 10 (high value / risk). Category scores are calculated based on indicator scores.

² A verage score for all catachments assessed.

Taylors Creek (lower)

Thankyou

Brimbank City Council

RMCG

Simon Roberts E2Designlab

Simon@e2designlab.com.au

