Irrigation of Amenity Horticulture with Recycled Water

A handbook for parks, gardens, lawns, landscapes, playing fields, golf courses and other public open spaces

Dr Daryl P Stevens, Steven Smolenaars and Jim Kelly

Irrigation of Amenity Horticulture with Recycled Water

A handbook for parks, gardens, lawns, landscapes, playing fields, golf courses and other public open spaces

Dr Daryl P Stevens, Steven Smolenaars and Jim Kelly

Acknowledgements

The Smart Water Fund encourages innovation in water recycling, water conservation and biosolid management to help secure Victoria's water supplies now and in the future.

Smart Water Fund

The delivery of these research and development outcomes, from the Australian Coordinator for Recycled Water use in Horticulture project, to the horticultural industry is made possible by the Commonwealth Government's 50% investment in all Horticulture Australia's research and development initiatives supported by Horticulture Australia Limited.

Know-how for Horticulture™

Reviewers

Wayne Kratisis, Melton Council. Dr Anne-Maree Boland, RMCG, Camberwell. Peter Symes, Royal Botanical Gardens, Melbourne. Guy Hoffensetz, Netafim Australia. Alison Anderson, Arris Pty Ltd, Sydney.

Disclaimer

The information contained in this publication is intended for general use, to assist public knowledge and discussion and to help improve the sustainable management of land, water and vegetation. It includes general statements based on scientific research. Readers are advised and need to be aware that this information may be incomplete or unsuitable for use in specific situations. Before taking any action or decision based on the information in this publication, readers should seek expert professional, scientific and technical advice. To the extent permitted by law, Arris Pty Ltd (including its employees and consultants), the authors, and the Smart Water Fund and its partners do not assume liability of any kind whatsoever resulting from any person's use or reliance upon the content of this publication.

Copyright © 2008: Copyright of this publication, and all information it contains is invested in Arris Pty Ltd and the Authors. All parties grant permission for the general use of any and all of this information, provided permission is obtained from and due acknowledgement is given to its source.

Arris Pty Ltd, Melbourne, 646a Bridge Road, Richmond, Victoria 3121. www.arris.com.au ISBN: 0 9750134 9 1

Contents

1. Introduction	7
1.1 What is recycled water?	8
1.2 Quality of recycled water	8
1.3 Why use recycled water in amenity horticulture?	9
 Is recycled water safe for use in amenity horticulture? Risks associated with recycled water 	10 11
	15
2. Setting up a Recycled Water Scheme	
2.1 Access to recycled water 2.2 Things to consider	16 16
2.2 Things to consider 3. Public and Occupational Health and Safety	10
3.1 Guidelines	19
3.2 Good OHS practice	19
3.3 Signage and pipe labeling	21
3.4 Training and auditing	21
3.5 Restrictions onsite related to OHS	22
4. Horticultural and Environmental Considerations	25
4.1 Introduction	26
4.2 Plant selection	27
4.3 Nutrient management 4.4 Salinity	27
4.4 Salinity 4.5 Sodium and chloride toxicity	32 38
4.5 Sodicity	41
4.7 Boron	47
4.8 Heavy metals and other chemicals of concern	48
4.9 Irrigation	50
4.10 Algae management	59
5. Monitoring Programs	61
5.1 General principles	62
5.2 Baseline monitoring	63
5.3 Recycled water supply monitoring 5.4 Soil monitoring	63 64
5.5 Plant monitoring	65
5.6 Water resources	65
5.7 Quality control and quality assurance	66
5.8 Data analysis and interpretation	66
5.9 Review process	67
6. Further Information	69
6.1 Websites	71
6.2 Text books	71
6.3 Guidelines	71
7. Appendix 7.1 Recycled Water Guidelines	71 72
7.2 Plumbing requirements/regulations	74
7.3 Classes of recycled water	75
7.4 Components found in recycled water	76
7.5 How salinity impacts on plant available water	77
7.6 Sensitivity of plants to sodium, chloride and salinity	78
7.7 Sensitivity of plants to boron	97
7.8 Estimating leaching requirements	102
7.9 Sensitivity of plants to phosphorus7.10 Turf grasses and lawns – Symptom, diagnosis and solutions	106 113
7.10 Turing assess and lawing – symptom, diagnosis and solutions 7.11 Trees and shrubs – Symptom, diagnosis and solutions	113
8. References	117

Definitions

Amenity Horticulture	Refers to the irrigation of plants grown for our enjoyment, ease and
	comfort for example, open spaces including parks, gardens, public landscapes and turf (race tracks, ovals and golf courses).
Arboriculture	The maintenance and management of trees in private and public gardens, parks and streetscapes; transplanting of large trees; protection and rehabilitation of trees; provision of advice on tree planting and maintenance; and evaluation of tree health and monetary value.
Floriculture	The growing and harvesting, or wild harvesting and processing, of commercial flowers, flower seed, foliage and essential oil plants; management and maintenance of field and controlled growing environments; and post harvest treatments and production of plant products.
Landscape	The construction and maintenance of domestic and commercial landscapes; design of gardens and commercial landscapes, rehabilitation of urban bush land; construction and installation of amenity and recreational landscape structures; and provision of technical advice and forward estimates on landscape development proposals.
Nursery (Retail and wholesale)	The propagation, production and maintenance of plants for sales and/or hire; wholesaling and retailing of plants and associated products; provision of advice on plant selection and garden design; and the marketing and promotion of plant products and services. The major distinction in this sector is the division between production, retail and wholesale nurseries, with some nurseries involved in two or three sectors.
Parks and Gardens	The management and maintenance of public and private parks, reserves and gardens; natural bush land and community recreation areas; historic, cultural and special use areas; design and implementation of special plant displays; provision of advice for plant selection; and contract administration and management.
Turf Management	The establishment and maintenance of commercial and recreational turf; design and preparation of sports turf playing surfaces; domestic mowing and turf maintenance operations; commercial growing and supply of turf; management of recreational and sport turf facilities; and provision of technical advice.
Mains Water	Usually refered to as potable or drinking water delivered through a water main.

Abbreviations

AGWR BMP Ca CF DHS Eir EC EC EC EC EC EC EC EC EC EC EC EC EC	Australian Guidelines for Water Recycling Best Management Practice Calcium Crop factor Department of Human Services Irrigation efficiency factor Rainfall efficiency factor Electrical conductivity Electrical conductivity of a soil saturation paste extract Electrical conductivity of a soil saturation paste extract Electrical conductivity of soil water Electrical conductivity of soil water Electrical conductivity of a soil:water extract at a ratio of 1:5 Environmental Improvement Plan Environment Protection Authority Environmental Protection and Heritage Council Authority Electrochemical Stability Index Exchangeable Sodium Percentage Evapotranspiration Hazard Analysis Critical Control Point Irrigation requirement Crop coefficient Leaching fraction Leaching requirement Magnesium Sodium Natural Resource Management Ministerial Council Occupational Health and Safety Pan Evaporation
NRMMC	Natural Resource Management Ministerial Council
	Pan Evaporation Quality Assurance
RF RSC	Rainfall Residual Sodium Carbonate
SAR	Sodium Absorption Ratio

Preface

This handbook has been designed and written for open space and recreation managers and keepers to help them understand and use recycled water; providing the practical on-theground how-to advice. The handbook has been written specifically for those responsible for the management of the site (i.e. Superintendents or Acting Superintendents). State and national guidelines have provided the framework and the boundaries to manage within. The Victorian guidelines (EPA Victoria 2003, 2005) are most relevant for the Victorian context.

This advice and knowledge is documented in a way that is both useful for day-to-day use and also for those who seek greater information to help improve their recycled water use from an economic or environmental perspective.


The authors would like to thank the many individuals that have contributed to drafting and finally publishing the handbook. These people have provided valuable feedback and considerable on-the-ground knowledge.

Introduction

This handbook is specifically for those involved with the irrigation of recycled water on amenity horticulture such as turf (ovals, golf courses, race tracks) and landscapes (gardens, flowers, shrubs, trees), with the aim to help site operators use recycled water safely and sustainably.

Amenity horticulture refers to the irrigation of plants grown for our enjoyment, ease and comfort. Industry sectors within the broad definition of amenity horticulture include:

- Arboriculture
- Floriculture
- Landscape
- Nursery
- Parks and gardens
- Turf management

1.1 What is recycled water?

Recycled water is a general term for water that has been reclaimed from wastewater.

This guidance manual focuses specifically on water recycled from treated sewage effluent. This source of recycled water is also sometimes referred to as reclaimed water. Many of the principles covered are also applicable for water recycled for irrigation from other wastewaters.

1.2 Quality of recycled water

The quality of recycled water varies depending on the source of the water and the recycling process used (see Appendix 7.3, p 75 for general recycled water characteristics). Generally Class A, B and C recycled water is used in amenity horticulture in Victoria. The quality of recycled water required for irrigation in amenity horticulture depends on the specific use, irrigation method and restrictions during irrigation.

It should be noted that the class of water usually refers to the level of treatment to remove pathogens from the water. It does not guarantee the water is suitable for a specific amenity horticulture use. The physical and chemical properties of the recycled water also need to be checked to ensure that the water is suitable for the soil and plant species to be irrigated.

Victorian guidelines specify four classes of recycled water; A, B, C and D (Appendix 7.3, Table 24). Recycled water can be produced using different degrees of treatment to produce a defined quality of water which will be fit for the intended purpose (Figure 1). The new Australian Guidelines for Water Recycling now refers to recycled water as being "Fit-for-purpose", in place of the Class system. This means that the user must ensure that the quality of water they receive is fit for the purpose they intend to use it for; from a human health, horticultural and environmental perspective; overcoming the limitations of the class terminology.

For detailed information on the different classes of recycled water used in Victoria and their permitted uses see Appendix 7.3, p 75.

Australia's water industry is one of the world leaders in water recycling. They use some of the most developed and robust treatment technology and have a strong commitment to water recycling.

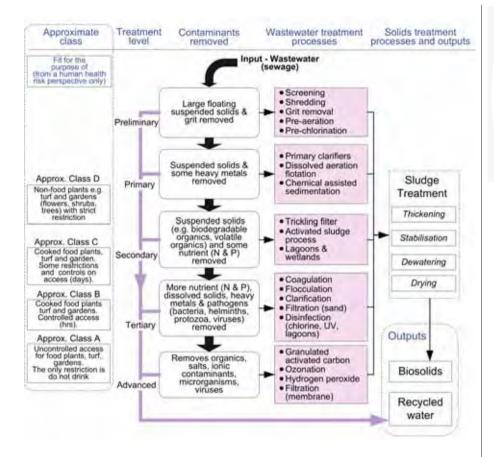


Figure 1 Treatment levels and processes typically used to treat wastewater. This diagram gives a general indication of parameters; it is not a substitute for specific guidelines and verification processes (Preliminary treated = limited treatment, Advanced = extensive treatment). Note: wastewater can be treated to a level where it is fit for the purpose of drinking.

1.3 Why use recycled water in amenity horticulture?

Recycled water is becoming popular for use in amenity horticulture as it:

- Frees up water that can be used more easily for drinking purposes (potable replacement)
- Is usually cheaper than drinking water
- Suffers fewer restrictions, when water restrictions are imposed on drinking water supplies
- Is an integral part of the water cycle

1.4 Is recycled water safe for use in amenity horticulture?

Recycling of treated wastewaters in amenity horticulture has been practiced around the world for more than 50 years. Any recycled water scheme developed now is by no means a 'world first'. Recycled water is currently being used in many countries (e.g. United States, Israel and Australia) for irrigating a range of amenity horticulture applications like gardens, ovals, playing fields and race tracks.

Australia now has more than 600 different recycled water schemes operating. Approximately 240 of these schemes use recycled water in the urban environment (e.g. golf courses and recreational parks), 80 are related to industry (e.g. washing and cooling) and 270 are agriculturally based (e.g. horticulture, forestry, pasture, viticulture and cane). Many of these recycled water schemes have now been operating for more than 20 years with no impacts on human health or the environment.

State health and environment protection departments set strict guidelines (Appendix 7.1, p 72) to ensure the health and safety of people working with recycled water and the public using parks, gardens and turf areas. Every recycled water scheme requires the approval of these departments and must show that appropriate safeguards are in place (before the recycling scheme is commissioned) to guarantee a particular water quality to users. These extensive safeguards guarantee protection of human health and the environment.

Figure 2 Demonstration landscape gardens water with recycled water, San Jose, California, USA.

Complying with safety standards

A risk assessment needs to be undertaken for recycled water in the same way as it would for water from any other source. Factors to consider include the standard to which the recycled water has been treated (What is it fit for?) and its intended use (e.g. application method, plants grown, soils). If a change of use occurs you should check with you water supplier to determine if the recycled water is fit for the purpose you would like to use it for.

Documentation from your recycled water provider

A recycled water scheme must go through a verification process and adopt a multibarrier approach to ensure only recycled water of the specified quality reaches the user. The scheme operator should be able to provide you with information on the:

- Safety of recycled water and standards which are used to obtain the specified class of water.
- Testing which supports and/or verifies that the treatment process can consistently
 produce the specified quality of recycled water
- Monitoring and treatment process used to ensure the quality of the recycled water is fit for turf and landscape plant species to be irrigated.
- Evidence from other recycled water schemes around Australia and the world where recycled water has been used, indicating that similar standards and treatment processes have been shown to supply water fit for the intended use (see also www.recycledwater.com.au).

1.5 Risks associated with recycled water

In most cases, environmental and health risks can be managed through the level of wastewater treatment or by the carefully managed use of recycled water. However, in some cases the recycled water may not be of suitable quality for an intended use and therefore should not be used. Some of the major risks associated with recycled water are outlined below.

Human health risks

Microbial pathogens in wastewater from sewage effluent are the major concern for human health when recycling water. The major groups of pathogens are:

- Bacteria (e.g. Escherichia coli, Salmonella spp, Campylobacter)
- Viruses (e.g. Enteroviruses, Rotavirus, Hepatitis A)
- Protozoa (e.g. Giardia lamblia, Cryptosporidium parvum)
- Helminths (e.g. Taenia spp (Tapeworm), Ancylostoma spp (Hookworm))

Bacteria can cause illnesses such as gastroenteritis, dysentery, cholera, respiratory illness, and skin/eye/ear infections in humans. Viruses can cause illnesses such as gastroenteritis, respiratory illness, nervous disorders, infectious hepatitis. Protozoa can cause illnesses such as gastroenteritis, amoebic meningitis and amoebic dysentery. Helminths are intestinal nematodes such as *Taenia* which causes tapeworm in humans, *Cysticercosis* in cattle and pigs, and *Ascaris* that causes roundworms in humans.

Not all exposures make you sick. To become infected by a pathogen you must be exposed to a sufficient number of pathogens. If recycled water is fit for the intended purpose, any possible exposure will be prevented or very low and infection unlikely.

Infection is related to the concentrations of pathogens in the recycled water (i.e. how treated and what class it is (Section 7.3, p 75)) and the amount of water ingested. The more ingested the greater the chance of infection occuring.

Recycled water uses that require particular attention for health risk assessment in amenity horticulture include:

- Irrigation of readily accessible public areas with potential for direct exposure to recycled water (e.g. playing fields, open public spaces, golf courses etc.);
- Discharging recycled water to surface waters that are used for fishing, or water contact sports; and

• Where workers may either come into direct contact with recycled water or ingest aerosols in their normal working environment.

Another risk to human health is on-site workers who come into direct contact with recycled water containing high numbers of blue-green algae, which may lead to skin and eye irritations or gastric upsets. This risk is higher with recycled water than many other sources of water as recycled water often contains high nitrogen and phosphorus levels which feed the algae (p 58).

Amenity horticultural risks

Some of the common horticultural risks from recycled water include:

• Salinity

a chronic problem that needs to be managed in many urban irrigation systems if using recycled water. Salinity can stress plants and impact on the aesthetics of the garden or landscape.

• Sodicity

can cause soil dispersion and swelling, reducing water infiltration on heavier textured soils leading to excessive runoff or waterlogging, and restrict root growth.

• Sodium/Chloride

can be toxic to plants if sprayed directly on leaves and if it accumulates in soils from ongoing irrigation.

• Nitrogen

a major nutrient required by plants. However, excess nitrogen can cause excessive growth, which can lead to extra maintenance or affect turf wear tolerance.

• Phosphorus

a major nutrient required by plants and is usually of benefit. However, it can be toxic to some native plant species.

• Hydraulic loading

excess can result in excess groundwater recharge, water logging and secondary salinity.

• Boron

can cause plant toxicity in some sensitive plant species in some soils.

To-date no risk from plant pathogens has been identified in water recycled from treated sewage water. However, if recycling water from other sources this may need to be managed (e.g. hydroponic systems).

Environmental risks

Many of the horticultural risks above can also have environmental impacts. Some of the common environmental risks from recycled water include:

• Salinity

can degrade soils and impact on freshwater plants and invertebrates in natural ecosystems if discharged directly with little dilution.

- Nitrogen and phosphorus can cause eutrophication (excessive nutrient levels) in land and aquatic ecosystems.
- Ammonium, pathogens, organic loads and turbity can impact on aquatic systems.

Note: many environmental risks are associated with runoff into local waterways.

Setting up a recycled water scheme

2.1 Access to recycled water

To determine if recycled water is available to you there are usually a number of options for sources. For example, are you near:

- Any supplies of recycled water currently available or planned in the future?
- A waste water treatment plants where you may be able to access and treat the water?
- Sewer mains where you could reclaim water directly from raw sewage?

Your local water authority should be able to help you answer these questions.

2.2 Things to consider

If you are considering setting up a recycled water scheme expert assistance should be sourced. Things to consider are:

- 1. Make contact with the appropriate Water Authority as to the possibility of receiving recycled water.
- 2. Check what environmental, health and/or planning regulations must be met by making contact with the appropriate regulatory agencies:
- a. Environment Protection Authority (EPA)
- b. Department of Human Services (DHS)
- c. The appropriate local government (e.g. Local Government Council)
- Obtain detailed analyses of the recycled water quality to ensure it meets your requirements. This should include:
- a. pH,
- b. Electrical conductivity (EC)
- c. Nitrogen (N)
- d. Phosphorus (P)
- e. Potassium (K)
- f. Sodium Na)
- g. Calcium (Ca)
- h. Magnesium (Mg)
- i. Sodium Adsorption Ratio (SAR)
- j. Carbonate (CO₃)
- k. Bicarbonate (HCO₃)
- I. Chloride (CI)
- m.Sulfate (SO₄)
- n. Boron (B)
- o. Heavy metals (depends on water source)
- p. Biological oxygen demand (BOD)
- q. Pathogens
- r. Suspended solids (SS)
- 4. Obtain the Class of the recycled water (Class A, B, C) and determine the appropriate uses and restrictions based on the class of recycled water (Section 7.3).

- 5. Undertake detailed site assessment Environmental Improvement Plan or Land Suitability Assessment (EPA or water supplier can advise on requirements).
- 6. Prepare a Health and Environmental Management Plan (HEMP).
- 7. Undertake cost analysis of implementing, using and maintaining the use of recycled water, including:
- a. upgrade to irrigation and water supply system
- b. on-site water storage
- c. on-site water treatment (e.g. acid or gypsum injection, algae control)
- d. signage
- e. increased maintenance costs including:
 - i. increased mowing/pruning
 - ii. use of growth retardants
 - iii. modified working hours
 - iv. soil amendments (e.g. gypsum)
 - v. increased turf renovations

The development and ongoing operation and maintenance of any amenity horticultural activity using recycled water should seek professional advice to ensure all human health, horticultural and environmental risks are managed appropriately.

Public and Occupational Health and Safety

3.1 Guidelines

Any recycled water scheme should comply with the Victorian Occupational Health and Safety (OHS) Act. This act is designed to provide a broad framework for improving standards of workplace health and safety to reduce work-related injury and illness. The Act aims to:

- Secure the health, safety and welfare of employees and other people at work.
- Protect the public from the health and safety risks of business activities.
- Eliminate workplace risks at the source.
- Involve employers, employees and the organisations that represent them in the formulation and implementation of health, safety and welfare standards.

3.2 Good OHS practice

A large variety and concentration of pathogenic (disease causing) organisms can be present in wastewater (p 11). The concentration and types of pathogens removed are dependent on the level of treatment during the production of recycled water (Figure 1), the higher the level of treatment the lower the number of pathogens, managing exposure.

Occupational exposures associated with the use of recycled water can also be managed by minimising ingestion and exposure to aerosols (fine air bourne water droplets).

General good practice

Persons engaged in any operation involving recycled water not fit to drink should:

- Avoid consumption of recycled water (Class A to D are not considered fit for drinking) and unnecessary exposures to sprays and aerosols.
- Wash hands with soap and clean water before eating, drinking or smoking, and at the end of each working day.
- Cover any wounds, open cuts or broken skin.
- Use appropriate protective clothing and equipment if required.

In many cases, the irrigation system used will also govern the risk of exposure and should be considered when planning and operating the reuse scheme (Table 1).

Exposure	Risk level							
	Drip	Sprinkler	Furrow					
Ingestion risk	Low	Medium	Medium					
Contact risk	Low	High	High					
Aerosol risk	Low	High	Low					

Table 1 Risk of occupational exposure to recycled water relative to the irrigation system.

Source: Stevens et al. 2006, p 120

Precautions to protect health of workers

All employees and contractors should be advised of limitations placed on the use of recycled water and of the precautions that need to be taken to protect their health:

- For lower class water (less than A), hepatitis A immunization (a faecal borne disease) may be recommended, although the risk even to workers at a sewage treatment plant is considered low (Brugha *et al.* 1998; Glas *et al.* 2001). Hepatitis B is a blood-borne disease and as such is unlikely to be a risk, so vaccination is not usually necessary (CDCDP 1993). If you require further advice contact the Department of Human Services, Melbourne.
- All external tap outlets on the drinking water service should be fitted with hose connection vacuum breakers to prevent backflow and possible contamination of potable water supply.

3.3 Signage and pipe labeling

Signage is an important part of risk management. All recycled water external tap outlets must have a prohibition sign complying with AS1319 (AS 1994). All entrances to sites using recycled water must have adequate signage informing of the use of recycled water.

Victorian recycled water guidelines state that warning signs with both a pictorial sign and words indicating that recycled water is being used should be placed in strategic positions. Content should be consistent with the examples provided (Figure 3).

Two-tone colouring should be used with black picture and text and red symbols. The number of signs and size of wording should be determined on the basis of the visual distance from the observer (for example, 100 mm wide sign at a distance of 3 m, AS1319 - AS 1994).

There is also specific signage and pipe labeling required for plumbing fittings (Appendix 7.2, p 74). If hoses are connected to recycled water outlets they should also be purple in color to identify them as containing recycled water.

Figure 3 Warning signs indicating not to drink the water and informing the public that recycled water is used on the property.

3.4 Training and auditing

Pre commissioning

Pre commissioning audits must be preformed to prevent any cross connections with the potable drinking water supply. All plumbing work must be carried out by a licensed plumber.

Induction of new staff

All new staff should be inducted into the work space and given a guided tour of the premises, which identifies all recycled water outlets, applications, best practices when using recycled water, and the importance of maintaining best practice to manage risks associated with recycled water.

Ongoing training

Up-dated training should be provided yearly to ensure all staff are made aware of any changes made to individual recycled water systems and/or changes to the guideline and regulations covering recycled water use in amenity horticulture.

3.5 Restrictions onsite related to OHS

Storage

Buffers

Adequate buffers (e.g. 25 to 30 m; NRMMC and EPHC 2006, p 97) should be installed and maintained between the storage area and the boundary of the property.

Access

No public access to recycled storage sites should be allowed. Signs indicating this should be present on entrances to storages. Locked gates and impenetrable fences should be installed around storages.

Run-off

Run-off to waterways and neighbouring sites must be prevented through good irrigation scheduling and monitoring (Best practice irrigation, p 53).

Odours

Odour can be minimised by managing flow in to storages, aeration and volumes of water stored for long periods; with the aim being to prevent the water going stagnant.

Flushing irrigation equipment with fresh water following irrigation can stop the odour associated with stagnant recycled water in irrigation pipes.

Colour

Piping must be installed as per the state guidelines or plumbing industry guidelines (Appendix 7.2, p 74).

Algae

The high levels of nitrogen and phophorus in recycled water can lead to algae blooms in water storages exposed to the sun. If an algal bloom is toxic direct contact with humans should be avoided (p 59), all algal blooms should be treated as toxic until species have been identified are considered safe.

Restricted public access to irrigation site

If lower class water is used (B, C or D) restricted public access to the irrigation site might be a crucial component of minimising health risks (Section 7.3, p 75). Restrictions could include:

- Withhold periods no access after irrigation, until dry (1-4 hours).
- Buffers suggested buffer distances from the edge of the wetted area to surface waters for the use of Class C recycled water in Victoria are summarised in Table 2.

Table 2 Suggested buffer distances for Class C water use in Victoria.

Irrigation Type	Buffer distance (m)
Flood/high pressure spray	100
Low pressure spray	50
Trickle or subsurface irrigation	30

Source: EPA Victoria 2003

It may be appropriate to reduce these buffer distances (Table 2) if Class A or B recycled water is used. The following buffer distances (boundary of the irrigation area to the nearest sensitive development areas such as residential areas, public parks, schools and shops) are suggested for spray irrigation applications:

- Class A recycled water quality no buffer distances are prescribed due to the high microbiological water quality, however, irrigation should ensure no spray drift or water movement off-site to avoid nuisance and environmental impacts to waterways.
- Class B recycled water quality at least 50 metres from the edge of the wetted area to the nearest sensitive development.
- Class C and D recycled water quality at least 100 metres from the edge of the wetted area to the nearest sensitive development.

These buffer distances may need to be increased if high pressure spraying is conducted. The buffer distances may be reduced if suggested best practice measures are implemented to reduce spray drift. These measures may include one or a number of the following, dependent upon the sensitivities of the area:

- Tree screens.
- Anemometer switching systems.
- Restricted times of watering.
- Irrigation systems that prevent the generation of fine mist, such as low rise sprinklers, small throw or micro sprinklers, and part circle sprinklers.

Other measures may be approved if you can demonstrate that they significantly reduce the risk to public health and amenity associated with spray drift.

Irrigation methods and maintenance

Irrigation times

Irrigation at night or the use of a time buffer (no access after irrigation, until dry (1–4 hours)) between the end of irrigating and public access may be required depending the Class of the recycled water. Buffer requirements are outlined in Victorian guidelines for lower classes of recycled water (i.e. Class B,C,D).

Irrigation systems

The method of irrigation should be considered as one tool to minimise human exposure to recycled water, while meeting irrigation requirements. For water not fit for direct human exposure, drip irrigation can lower the health risks, compared with sprinkler irrigation, as there is very little risk of human exposure. However, the irrigation systems should be selected considering all site conditions and irrigation requirements.

Other options could include spray drift control through low-throw sprinklers (180° inward throw) buffer zones of 10 - 15 metres, vegetation screening, drip irrigation near boundaries (surface or subsurface) or automatic switches stoping irrigation if wind speeds exceed trigger levels (NRMMC and EPHC 2006).

Odour control

If odour is a concern, human exposure to odours can be minimised on-site by:

- Flushing irrigation lines/pipes with a non recycled water source after each irrigation.
- Irrigating at night when the public are generally indoors.
- Install and maintain adequate buffers between the irrigation area and the boundary of the property to help diffuse and dilute odours.

Horticultural and Environmental Considerations

4.1 Introduction

Site selection

The site chosen for irrigation with recycled water will have a large impact on the types of environmental risks and horticultural production undertaken. If the site has not already been selected, things to consider include:

- climate plants that can be grown
- soil type
 nutrient requirements
 location
 hydrology
 other available water i
- other available water sources. slope

In many established urban landscapes there is no short-term flexibility to replace established plants to suit the various characteristics of recycled water. This means the recycled water needs to be 'fit for the purpose' of irrigating the plants already established in the areas on the specific soils they are already growing in.

In all cases the short and longer term sustainability of the amenity horticultural system should be checked against potential hazards in recycled water discussed in this chapter (e.g. salinity, sodicity, eutrophication).

Potential impacts

There are a range of possible impacts from irrigation with recycled water on the amenity horticultural system or the environment (Table 3). The impacts are usually manageable and management strategies are discussed in this Section.

Table 3 A range of potential impacts that may need to be managed when irrigating with recycled water.

Effects or impact	Description
Concentration	Increase in the amount or strength of hazards in recycled water, through evaporation.
Contamination	Increasing concentrations of unwanted constituents in environmental end points (e.g. soils, plants, water bodies, biota, etc).
Eutrophication	Nutrient enrichment leading to increased productivity. Typically in the form of nitrates and phosphates, and most often from human sources such as agriculture, recycled water and urban runoff.
Loss of biodiversity	Mortality of native biota resulting in reduced ecosystems, species or genetic diversity.
Nutrient imbalance	Unbalanced supply of plant mineral nutrients resulting in plant deficiencies and toxicities.
Odour	A smell, especially one that is unpleasant.
Pest and disease	An insect or animal that destroys plants and an illness affecting plants, animals or other biota.
Salinity	The presence of soluble salts in soils or waters. Electrical conductivity (EC) and total dissolved salts (TDS) are measures of salinity.
Sodicity	Soil with excessive exchangeable sodium (ESP>6%), leading to poor soil structure.
Toxicity	The extent to which a compound is capable of causing injury or death, especially by chemical means, to plants and other terrestrial or aquatic biota.
Waterlogging	Saturation of soil with water.

These impacts, the associated risk and their management are discussed below in terms of several key hazards.

4.2 Plant selection

There are several specific factors that must be considered when selecting plant species that will be irrigated with recycled water. These include:

- Salinity tolerance
- Sensitivity to chloride, sodium and boron
- Soil type and suitability
- Nutrient requirements
- Water requirements
- Phosphorus sensitivity.

These factors are discussed in the following sections in terms of the major hazards associated with recycled water.

4.3 Nutrient management

Recycled water contains varying concentrations of nutrients (Table 4). Concentrations vary depending on sewage inflow and the treatment process (Figure 1). Different plant species have varying nutrient demands (Table 5). The aim of amenity horticulture should be to minimise feeding (fertiliser use), watering and mowing/pruning, while maintaining the desired appearance. Fertilisation for establishment (to get to the desired appearance) might be different to fertilisation to maintain the desired appearance.

The annual nutrient applied with irrigation of recycled water (Table 4) should only be used as a guide and further advice should be sought to determine the rates of nutrients to be applied through your fertilisation program. The amount of nutrients added to soils from recycled water depends on the irrigation rate and nutrient concentration in the recycled water.

Table 4 Nutrients applied with recycled water (kg/ha) at different irrigation rates.

Recycled water				Annual irrigation											
	Concentration		-	ML/h 00 mr			ML/h 00 mn			ML/h 00 mr			ML/h 00 mr		
		mg/L		Ann	Annual nutrient applied with irrigation (kg/ha) (divide by $10 = g/m^2$)										
Nutrient	ave	min	max	ave	min	max	ave	min	max	ave	min	max	ave	min	max
Nitrogen (N) ^A	15	3	39	15	3	39	46	8	117	91	17	234	137	25	351
Phosphorus (P) ^A	6	0	12	6	0	12	18	0	36	35	0	72	53	0	108
Potassium (K) ^B	18	10	33	18	10	33	55	30	99	110	60	198	166	90	297
Sulphate (SO) ^B	124	33	212	124	33	212	371	99	636	741	198	1272	1112	297	1908
Calcium (Ca) ^A	35	10	74	35	10	74	105	30	222	210	60	444	315	90	666

ANRMMC and EPHC 2006, p 147

^BAsano *et al.* 2007, Pettygrove and Asano 1985

Nutrient requirements

Nutrients applied with recycled water should be balanced with plant requirements. If more nutrients are added through irrigation and fertilisation than is required by the plant (i.e. removed by pruning/mowing, stored by the plant and adsorbed by soil), then nutrients will accumulate in the soil and potentially be leached into surface and groundwater. This wastes money (i.e. the cost of fertilisers and its application) as well as causing potential health and environmental problems offsite. Ammonium fertilisers are known to be toxic to plants if applied at high concentrations. However, ammonium in recycled water (averages approximately 8 mg/L ammonium – N) is usually below levels that will be toxic to plants (i.e. < 30 mg/L Handreck and Black 2002, p 153).

When assessing recycled water quality for use in amenity horticulture check that the plants to be grown can tolerate the range of salinity, sodium, chloride and boron concentrations found in the recycled water Soil tests should be used to determine available nutrients that remain in the soil and these nutrients factored into the nutrient budget.

In some amenity horticulture situations, the nutrient supply can be used to help manage the landscape. For example, nitrogen can be used to manage turf growth if all other nutrients are adequately supplied. Generally, the more nitrogen, the more growth and a greener more lush turf. However, the aim of turf growing is not to maximise growth, but to provide a turf with an acceptable surface and appearance to the user. Application of excess nitrogen can lead to excess growth, extra resource use (water, fertiliser), extra maintenance (cutting) and can ruin the turf (lower wear tolerance or strength).

Supply of nitrogen excess to what the plant can use, can lead to leaching of nitrogen through the soil profile, where it could end up in ground or surface water causing eutrophication. For most home gardens the requirement for a lawn is simply that it looks good and excess nutrients should not be applied.

An indication of nutrient (NPK) requirements for turf growth is summarised below (Table 5). If these demands are compared with Table 4 (p 27) nutrients applied in recycled water at an annual application rate of 600 mm or greater could apply sufficient NPK requirements (Table 5). This will vary with the source of the recycled water and nutrient levels and should be checked for each specific site.

	Nitrog	en (N ^c)	Phosph	orus (P)	Potassium (K)		
Component	(g/m²)	(kg/ha)	(g/m²)	(kg/ha)	(g/m²)	(kg/ha)	
Annual application	6-40 ^A	60-400 ^D	3.6–12.4	36–124 ⁸	6–48	40–267 ^E	
Removed with clippings	24	240	6	60	13	130	
Home lawn application	12–20	120–200	2.5–10.5	25–105	8–13	80–130	

Table 5 Typical annual nutrient demand of turf plants and removal with clippings.

AHandreck and Black 2002, p 287

^BDepending on the P fixing capacity of the soil

^cNote the 20 to 50% of the nitrogen applied can be lost through volatilisation and denitrification

(Handreck and Black 2002, Asano et al. 2007)

 $^{\scriptscriptstyle D}\mbox{Depending}$ on turf species, what the turf is being grown for, growth requirements and N losses

^EApproximately a 3:2 ratio N:K (Handreck and Black 2002, p 294)

Please note all fertiliser requirements should be determined by soil tests for plant available nutrients. Soil tests should include those identified in Table 6. Landscape nutrient requirements vary considerably depending on the composition of plants and their density. For landscape soils a general guide for optimum levels of soil properties is listed below (Table 6).

Soil Property	Optimium level		Unit	Comment
Organic Matter	3–7		%	In top 10 cm
Permeability	>	3	cm/hr	(Saturated hydraulic conductivity)
Electrical Conductivity (EC)			dS/m	See Table 8
рН	4.5–6 6–7 7–8.5			Acid loving plants Most plants Alkaline loving plants
Nitrate-N	20–40 mg/kg		mg N/kg soil	Lower level tolerated if regular application of N with recycled water
Phosphorus	Olsen <5 <20 15–40	Colwell ^A <10 <40 30-80	mg P/kg soil	Plants highly sensitive to P Plants moderately sensitive to P & turf Most plants
Potassium (exchangeable)		>0.3	meq/100g	2–5% of cation exchange capacity
Calcium (exchangeable)		>1	meq/100g	60-80% of cation exchange capacity
Magnesium (exchangeable)	>0.3		meq/100g	10–15% of cation exchange capacity
Sodium (exchangeable)		<1.5	meq/100g	<6% of cation exchange capacity
Chloride	<300		mg/kg	Unless plants tolerate higher
Copper	0.3–5		mg/kg	DTPA extract
Zinc	0.5–5		mg/kg	DTPA extract
Boron	0.15	-0.4	mg/kg	Hot water or hot calcium chloride extract

Table 6 Estimates of soil test ranges for optimum levels for most landscape plants.

Source: Handreck and Black 2002

Note: lower trace elements may apply for Australian Natives grown for cut flowers, turf species and nutrient demands will vary with desired appearance and growth rates

^AColwell soil extraction method is approximately twice the Olsen soil extraction method

Seasonal variation

Nutrient requirements for plants vary with their growth and stage of maturity. The greater the growth rate the more nutrients required. Higher growth rates are usually in the warmer months with longer days (more sunlight). Fortunately this coincides with greater water requirements, so to some degree the nutrient delivery through recycled water (Table 5) manages itself.

Unfortunately the nutrient concentration in the water makes it difficult to prevent application of nutrients in situations where sufficient nutrients are available or growth is being restricted to minimise additional maintenance costs (p 27).

Toughening of plants

Nutrients can also play a role in toughening up the plant to be more resistant to dry conditions, disease and wear. For example, sufficient potassium encourages the thickening of cell walls in turf leaves, toughening the plant so it becomes more wear resistant (Handreck and Black 2002). Thickening of the cell walls also helps the grass become more disease resistant. Optmium levels of potassium also ensures maximum root growth so the plant can access more soil water. In contrast, excess nitrogen can lead to lanky, succulent, weak plants that are susceptible to diseases, do not tolerate dry conditions and easily fall over.

The nutrients in recycled water should be factored into any fertilisation program to ensure nutrients are applied at optimal concentrations, ensuring healthy tough plants.

Environmental impacts of nutrients

Nutrients are required by all organisms. Often the growth of plants and algae in aquatic environments is limited by the availability of nutrients, particularly phosphorus and nitrogen. Enrichment of aquatic systems with nutrients can stimulate excessive growth ("blooms") of water-plants, particularly algae. This process of nutrient enrichment of water is called eutrophication.

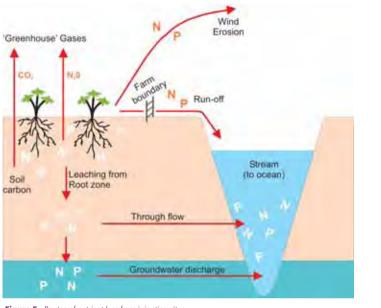
Excessive nutrient application can be a major source of nutrient input to freshwater aquatic habitats; especially phosphorus. Concentrations of phosphorus as low as 0.02 mg/L (20 parts per billion) can cause environmental problems in some surface waters; even limited movement of phosphorus from horticultural sites can have considerable impact.

Eutrophication and algal blooms can negatively affect human users of water bodies and also aquatic ecosystems. Light is blocked from reaching underwater plants by high levels of algae

in the water, suppressing their growth. This has follow-on effects for the rest of the aquatic ecosystem, as water-plants provide food and shelter for fish, frogs, water birds and bugs.

Algal blooms can also exclude native species and cause fish kills by reducing oxygen levels in the water when the bloom breaks down (Figure 4). Techniques for minimising the chances of algae blooms are discussed in Section 4.10 Algae management (p 59). The best management method is to prevent nutrients from moving off-site.

Figure 4 Algal bloom causing fish to die.


How do nutrients move into aquatic environments?

Dissolved nutrients can be carried off-site with run-off water, or down through the soil to groundwater during leaching (Figure 5). Nitrogen, in the form of nitrate, is particularly susceptible to leaching to groundwater because it is easily dissolved in water and is rarely bound to soil particles. Dissolved phosphorus generally only leaches through soil when there are high concentrations of phosphorus in the soil, overloading the soil's phosphorus holding capacity, leading to movement of phosphorus off-site.

Once in the groundwater, excessive nutrients may cause direct human health issues (e.g. excessive nitrate in drinking water can lead to methemoglobinemia, particularly in babies).

Nutrient polluted groundwater can also discharge into streams and wetlands, causing eutrophication.

Nutrients bound to with soil particles may also be carried off-site into streams and wetlands by soil erosion. Phosphorus, tends to be associated with clay particles and surface run-off water is often dominated by clay particles.

Figure 5 Routes of nutrient loss from irrigation sites.

Reduction of nutrient pollution of aquatic systems

Match nutrient supply to demand

Nutrient losses tend to occur when they are in excessive amounts in the soil. Nutrient applications should be matched to the needs of the plant, including nutrients in recycled water as part of the nutrient budget. As plants mature, their nutrient requirements change.

Nutrient movement is most likely when there are high levels of nutrients in the soil and/or when more nutrients are applied than the soil can immobilise and plants can take up. Nutrients are less likely to move off-site when using recycled water and supplementary fertilisation, compared with conventional fertiliser application. This is because small amounts are continually added with the irrigation water rather than higher amounts added to the soil a few times a year. Recycled water can be a form of fertigation because of its relatively high nutrient level (Table 4).

Keep soil in the garden/landscape/turf area

High concentrations of nutrients, especially phosphorus, are often contained in soil eroding from irrigation sites. Erosion can be minimised by avoiding bare soils through application of mulches and by replanting regeneration sites where lower cover is expected. Well vegetated buffer strips, including native vegetation and ground cover where possible, should be left around water courses, in order to trap eroded soil particles and prevent them from entering the water. Soil sodicity (Section 4.6, p 41) is often a cause of higher levels of water run-off, leading to higher erosion of soil particles and associated nutrients. Soil sodicity should also be managed to minimise erosion and runoff.

Recycled water can be a form of fertigation

Excessive leaching

If water is more saline than ideal, a leaching fraction will be required to maintain soil salinity at acceptable levels (p 102). Excessive leaching can lead to excessive movement of salts and nutrients past root zones and into ground water systems. If large leaching fractions are required (>5%), the hydrology of the site must be checked to determine the environmental risks associated with nutrients entering ground water or nearby surface waters.

Phosphorus sensitive plant species

Some plants native to nutrient poor sandy soils in southern Australia and South Africa, particularly of the Proteaceae family (e.g. Banksia, Grevillia, Protea), are adapted to very low nutrient environments and have developed root specialisations for increasing nutrient uptake, particularly phosphorus (Lamont 1982).

Over 800 native Australian plants have been assessed for their relative sensitivity to phosphorus (Section 7.9, p 106). This list serves as a guide for planning and problem diagnosis, however, it should be kept in perspective, with the understanding that this list was determined in a potting medium and in-ground results may vary. There is some evidence that the growth of many exotic taxa are also sensitive to high levels of P (e.g. Viburnum, Camellia, Rhododendron and Magnolia). For example, the Royal Botanical Gardens have landscape experience of iron chlorosis in Magnolia spp. exacerbated by the antagonistic locking up of iron by high levels of soil P.

In landscape and garden plantings, sensitive species might withstand 5 mg/kg available (Olsen) P, and more tolerant species 20 mg/kg (Table 6). Concentrations of >60 mg/kg Olsen-

Figure 6 Phosphorus toxicity in poinsettia. Source: www.ces.ncsu.edu/depts/ hort/poinsettia/corrective/b5.html

bicarbonate extractable P were suggested to often be fatal to some Banksia species. At high irrigation rates (Table 4) irrigation of recycled water could easily add 20 mg P/kg soil, increasing soil P concentration to levels which could impact on phosphorus sensitive plants. Coarse textured soils with low cation exchange capacity and low P buffering capacity are most at risk. The effect would be even greater if fertilisers containing phosphorus were applied.

The first symptom of phosphorus toxicity for sensitive plants is grey, rust or black discoloration of the margins of old leaves, the younger foliage yellows through iron deficiencies (e.g. Figure 6). Plants not so sensitive have a dull color appearance and/or reduced growth (Handreck and Black 2002).

4.4 Salinity

Salinity is potentially the greatest impediment to plant growth in Australia. Soil and water salinity can be measured as total dissolved salts (TDS; unit = mg/L) or electrical conductivity (EC; unit dS/m or multiply by 1000 for μ S/cm).

Salinity tolerance of plant species and variety vary considerably. Some salt tolerant plants can tolerate water or soil salinity (ECe) greater than an electrical conductivity of 16 dS/m, while salt sensitive plants can only tolerate 0.65 dS/m (Appendix 7.6, p 78).

Some soils can be quite saline (ECe up to 19 dS/m) due to a combination of naturally occurring conditions and the accumulation of salts. High salinity means that plants will not grow as well and have undesired appearance.

Soil salinity can change over time due to the salinity of irrigation water, irrigation practices and agronomic mismanagement (e.g. excessive use of saline fertilisers or manures). Soil testing should therefore be undertaken regularly and irrigation practices altered accordingly.

The interaction between saline irrigation water and soil salinity needs to be managed to ensure the ongoing sustainability of any irrigation system. A soil is usually defined as saline when the level of salinity interferes with plant growth.

General classes of soil salinity are described in units of electrical conductivity (Table 8); different plants have different degrees of susceptibility to salts (Appendix 7.5). Plant sensitivity to salinity should be considered when deciding on plant species to be grown at a particular location.

Causes of salinity

Salinity in soil and water results from the presence of dissolved salts such as sodium (Na), calcium (Ca), magnesium (Mg), potassium (K), chloride (Cl), sulfate (SO_4), carbonate (CO_3) and bicarbonate (HCO_3). A common misconception about salinity is that it is caused by sodium chloride (NaCl = table salt) alone. However, soil salinity arises from the presence of many salts, including soluble fertilisers. The most common sources of salt are irrigation water and rising water tables, but other sources include fertilisers, weathering of rock, pollution and ocean spray from coastlines.

The most common method used for the removal of salt from irrigation water is a combination of ultra filtration and reverse osmosis; however, the cost of salt removal is often prohibitive. The most effective way to ensure that irrigation water is of the best quality possible is to identify the sources of salt entering the wastewater and, where possible, exclude it from entering the source water. Many Water Authorities have salt reduction programs to facilitate this. These sources may include trade wastes, saline groundwater incursions into sewers, back flushing of water softeners and detergents used.

How soil salinity is measured

Water salinity measurement

Salinity is commonly measured as the Electrical Conductivity (EC) of water with units of dS/m (deci-Siemens per metre). For irrigation water ECi is sometimes used to refer to the electrical conductivity of the irrigation water.

Water salinity can also be measured as Total Dissolved Solids (TDS), which has units of mg/L or parts per million (ppm). The approximate relationship (Asano *et al.* 2007, p 959) between EC and TDS is:

- for ECi < 5 dS/m
 - TDS \approx ECi x 640 (TDS in mg/L; EC in dS/m)
- for ECi > 5 dS/m
 - TDS \approx ECi x 800 (TDS in mg/L; EC in dS/m)

Soil salinity measurement

Soil salinity is measured in the solution extracted from the soil. To measure the salinity of a soil it is usually mixed with water (i.e. a soil:water mixture). There are two main methods of measuring soil salinity in Australia:

- Saturated paste extract (ECe), which is an estimate of the salinity of soil water (ECsw (ECsw ~ ECe x 2)) or what plant roots are exposed to; or
- 1:5 soil:water extract (EC1:5).

Salinity is one of the greatest impediments to plant growth in Australia When considering salinity measurements, it is important to know which method of measurement was used, as the two methods produce different results. Approximate conversions between the ECe and EC1:5 are given in Table 7. Much of the theoretical information relating to plants, soils and salinity is based on ECe, however, EC1:5 is a much easier measurement to make. Because of this, the 1:5 soil:water method is most commonly used in the field. General soil salinity classes and the relationship between ECe and EC1:5 are summarised in Table 8.

Table 7 Approximate relationship between ECe and EC1:5 for different soil textures.

Soil Texture	EC _e :EC1:5 Relationship
Sand, Loamy Sand	ECe = 15 x EC1:5
Sandy Loam	ECe = 12 x EC1:5
Clay Loam	ECe = 9 x EC1:5
Clay	ECe = 6 x EC1:5

Source: modified from Anderson et al. 2007, Carrow and Duncan 1998.

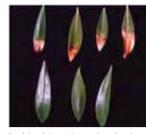
Note: if the salt in the soil is dominated by gypsum these conversions are unreliable.

Table 8 General soil salinity classes expressed and electrical conductivity of soil measure as soil saturation extract (ECe) or in a 1:5 soil:water mix (EC1:5).

	ECe	EC1:5 (dS/m)							
Class of soil salinity	(dS/m)	Sand Sandy Loam Clay Loam							
Low	<2	< 0.13	< 0.16	< 0.22	< 0.33				
Moderately low	2-4	0.13 - 0.26	0.16 - 0.33	0.22 - 0.44	0.33 - 0.66				
Moderate	4-8	0.26 - 0.53	0.33 - 0.66	0.44 - 0.88	0.66 - 1.33				
High	>8	> 0.53	> 0.66	> 0.88	> 1.33				

Source: Modified from Handreck and Black 2002, p 303

Why salinity is important?


High levels of salinity can reduce plant growth and appearance (Figure 7). The severity of salinity damage depends on:

- Plant species and cultivar (including rootstock)
- Growth stage
- Soil properties
- Environmental conditions
- Types and quantities of salts present.

It is important to understand that the concentration of salts in the soil (soil salinity) also changes over time when soil water volume change. For example, the concentration of salts in soil water increases between two and five times between irrigation events as soil water evaporates or is used by plants (i.e. Evapotranspiration). The soil salinity then decreases again as irrigation or rainfall dilutes the salts contained in the soil water.

Hibiscus does not tolerate salt very well, with leaf burn occurring even under the mildest salt treatment. Severe leaf burn is shown above.

Bottlebrush is rated as moderately salt tolerant. Older leaves subjected to salt often exhibit 'tip burn', as seen here.

Xylosma is moderately salt tolerant. Response to salt varies from plant to plant.

Bougainvillea, which is not well-adapted to sand cultures, is highly salt tolerant if grown in soil.

Figure 7 Syptoms of salt stress from some ornamental plants. Source: Tanji *et al.* 2007 courtesy of the WateReuse Foundation.

Holly has very poor salt tolerance. This specimen exhibits moderate 'bronzing' of leaves.

Table 9 shows salinity ratings and plant tolerance groups for irrigation water salinity. Stresses are likely to occur before visible symptoms of salinity are seen in plants. Symptoms of salinity are generally the same as symptoms of water stress, as the high level of salts reduces the ability of the plant to extract water from the soil. Salt affected plants are generally stunted and have cupped leaves. Some plants initially have a blue-green colour and eventually the leaves become brown and brittle on the tips and edges as the salinity stress continues.

Ivy is only slightly salt tolerant. 'Bronzing'

and curvature of the leaves, as shown

here, is likely due to chloride toxicity.

These impacts of salinity are difficult to cure in the short term by giving the plants more water or more frequent waterings. However, a long term irrigation strategy can be used to flush salts from the root zone (Appendix 7.8, p 102).

Table 9 Irrigation water salinity ratings.

ECi (dS/m)	TDS (mg/L) ^A	Plant salt tolerance groupings	Water salinity rating
<0.65	<415	Sensitive plants	Very low
0.65 – 1.3	415 - 830	Moderately sensitive plants	Low
1.3 – 2.9	830 - 1,860	Moderately tolerant plants	Medium
2.9 – 5.2	1,860 - 4,160	Tolerant plants	High
5.2 – 8.1	4,160 - 6,480	Very tolerant plants	Very high
>8.1	> 6,480	Generally too saline	Extreme

Source: ANZECC and ARMCANZ 2000

^ACalculated as per Section 4.4, p 33

 $\mathsf{ECi} = \mathsf{electrical}$ conductivity of the irrigation water

TDS = total dissolved salts

Note: for detailed salinity tolerances of amenity horticulture plants see Appendix 7.6, p 78

Salinity can negatively affect plants in four ways:

- 1. Reduced ability to extract water from saline soil (Section 4.4)
- 2. Direct toxicity of individual salts on plants (Section 4.5)
- 3. Indirect effects of salts on nutrient uptake and balance (Section 4.5)
- 4. Negative impacts on soil structure through effects of sodicity (Section 4.6)

In practice, these effects are often hard to distinguish from other causes because of variations in response according to plant species, cultivars and root stocks, plant growth stage, types and ratios of salts, duration of exposure and environmental conditions.

How can salinity be managed?

Reduce salt input

It is difficult to avoid adding salt to soils through irrigation as all water contains some salts. However, using irrigation water with low salinity will add less salt (Table 10). Salinity of irrigation water can also be decreased by mixing ("shandying") with water of lower salinity if available. Some salts are essential for plant growth, problems usually arise when they are present far in excess of requirements.

Irrigation water salinity EC TDS		Annual Irrigation						
		2 ML/ha 200 mm	4 ML/ha 400 mm	6 ML/ha 600 mm	8 ML/ha 800 mm	10 ML/ha 1000 mm		
(dS/m)	(mg/L)		Salt applied (t/ha)					
0.65	415	0.8	1.7	2.5	3.3	4.2		
1.3	830	1.7	3.3	5.0	6.6	8.3		
2.9	1,860	3.7	7.4	11.2	14.9	18.6		
5.2	4,160	8.3	16.6	25.0	33.3	41.6		
8.1	6,480	13.0	25.9	38.9	51.8	64.8		

Table 10 Relationship between salinity of irrigation water, application rate and the salt applied per hectare.

Note: For irrigation rate mm also = L/m^2 .

Irrigators should also avoid over-irrigation as this may lead to rising water tables. Water tables within, 2 m of the surface are likely to cause surface salinisation. The more water applied, the more salt applied (Table 10). So the more efficiently the water is used by the plants the less salts applied to the soil. For example, subsurface drip irrigation can minimise water loss through evaporation and delivery of water to the plant directly, but water applied through sprinkler irrigation can increase losses through evaporation during application (i.e. effective irrigation, p 51), leaving the salt behind.

Landscape managers also need to be aware of the salt content of soil amendments. Soluble fertilisers, animal manure and amendments like gypsum and lime contain a high concentration of salts and should only be used in recommended quantities and applied at appropriate times.

Leaching salt from the root zone

Salt from any irrigation water accumulates in soil when the water evaporates from the soil and/or is used by plants, leaving the salts behind that and not taken up by the plant. This accumulation of salt leads to degradation of soil and also has direct salinity effects on plants. Plants use some salts, but these are usually relatively small amounts compared with salt applied through irrigation with recycled water.

To manage the accumulation of salts in the root zone of plants, a quantity of water called the leaching requirement (LR) needs to be applied. The leaching requirement is applied in the form of excess irrigation water, greater than plant requirements; the excess amount of water leaching salts below the root zone of the plant. Irrigation rates above plant and evaporation requirements (Evapotranpiration) wash accumulated salts downward. However, frequent light irrigations that just meet evapotranspiration rates are likely to leave salts concentrated in the root zone (Section 4.9, p 50).

Method of irrigation

There are several methods of irrigation available for use in amenity horticulture; drip (surface or subsurface), set sprinkler (impact, spray, micro spray), hand held sprinklers or sprays, and in some cases furrow. These irrigation systems are discussed further in Section 4.9, p 50.

Drip irrigation allows the use of irrigation water with higher salinity, as evaporative losses (and therefore resulting salt concentrations in the soil) are minimsed. Drip irrigation can also reduce the effects of salinity by:

- Keeping the soil around the plant roots continuously moist (p 36);
- Providing steady leaching of salt to the edge of the wetted zone around the plant; and
- Not applying water to plant foliage.

Drip irrigation might apply less salts with less water, however, salt concentration can build up on the outer wetting front of the drip area and should be managed as required (e.g. application of leaching fractions or irrigation during rainfall to help flush the salt from the root zone).

Sprinkler irrigated plants can suffer extra damage through uptake of salts through the leaves; especially if marginally saline water is used. Under these circumstances, evaporation should be minimised to reduce accumulation of salt on the leaves by watering at night, early in the morning or late in the evening. Sprinkling should also be avoided under hot and/or windy conditions. Slow revolution impact sprinklers also allow drying periods, with salt accumulation on the leaves, and they should be avoided when using irrigation water with salinity higher than ideal. Table 11 shows general comparisons between the sustainability of different irrigation methods and salinity levels.

Table 11 Water salinity and recycled water irrigation system suitability.

	Total dissolved	Suitability ^a				
Salinity	Salts (mg/L)	Drip	Sprinkler	Furrow		
Low	<830	High	High	Medium		
Moderate	830–1860	High	Medium ^B	Medium		
High	>1860	Medium	Low	Low		

Assuming soils have reasonable drainage, if drainage is very poor, then drip should be used;

^BLeaf burn becomes a problem.

Source: Modified from Christen et al. 2006, p120.

Note: Clogging of drip irrigation can be a problem if recycled water has excessive concentrations of some components (Table 20); filtering may be required.

Interaction of salinity with sodicity

Saline irrigation water can have a stabilising effect on soil structure. This effect is called the electrolyte effect. Sodic or dispersive soils are likely to be less dispersive when irrigated with saline water than with rain water. If the sodium adsorption ratio (SAR – defined in Section 4.6, p 41) of irrigation water is high relative to its EC, soils containing clay are likely to exhibit structural instability (Figure 11, p 45).

Good soil structure allows root development and salt management

The main concerns with salinity and SAR of irrigation water are their effects on structural stability and hence the hydraulic properties of soil. Good hydraulic properties need to be maintained to enable the appropriate leaching requirement to move salts below the root zone (Section 4.6). Good soil structure also aids root development, improving plant health and drought resistance, and increases soil water holding capacity.

Managing salinity

Tools that can be used to manage the potential negative affects of saline recycled water include:

- Plant selection select plants that are tolerant to the salinity of the recycled water being used for irrigation.
- **Irrigation scheduling** irrigate often to keep the soil profile wet reduces the average soil water salinity exposed to the plant roots. Be sure to include a leaching fraction to manage build up of salts (i.e. leaching requirement).
- Irrigation timing irrigation at night reduces the potential for direct leaf burn from marginally saline irrigation water, particularly if spray irrigation is used.
- **Irrigation method** drip irrigation can be effective in minimising salinity damage by reducing water losses due to evaporation and eliminating plant leaf water contact.
- **Mulching plants** the maintenance of plant residues and/or the application of mulches can reduce surface evaporation, reducing the build up of salts. The break down of organic wastes also improves soil structure.
- Irrigation of seedlings plants are most susceptible to salinity at germination and early seedling stages. The use of less saline irrigation water at this time can reduce salinity damage. For example, establish plants when rainfall is more likely or shandying recycled water with less saline water.
- **Maintaining soil structure** via the use of calcium amendments (e.g. gypsum) or physical soil coring, maintaining root densities, applying additional sand or organic matter to heavier soils.

Irrigation managers should continually monitor soil salinity as salt stressed plants can look less appealing and be more susceptible to disease and wear (turf). Visual monitoring and soil and plant analysis should be part of an on-going program to manage the risks from salinity (Section 5.4, p 64).

4.5 Sodium (Na) and chloride (Cl) toxicity

Sodium and chloride are specific components of soil and water salinity that can negatively impact on plants. Sodium and chloride can reduce growth and aesthetics in two main ways:

- Direct toxicity
- Indirect effects on nutrient uptake and balance.

Many of the affects of sodium and chloride are difficult to tell apart and these two elements are commonly found together in soil and water. Recycled water can have significant levels of sodium and chloride and horticulturists need to be aware of the potential impacts on plants and the environment. The two major impacts of sodium and chloride and their management are discussed below.

Sodium toxicity

Sodium is not an essential element; it is a "beneficial mineral nutrient" and is actually beneficial in some plants under certain conditions.

Most plant species are natrophobic ("sodium hating") and have mechanisms to exclude sodium from uptake by the roots. In woody perennial plants, like olives and grapes, the selection of root stock that limits the uptake of sodium forms part of an effective sodium management strategy.

Sodium can also be absorbed through the leaves from sprinkled irrigation water. Hence, plants that can exclude sodium at the roots may still suffer damage from leaf-absorption of sodium.

Symptoms of sodium toxicity

Symptons of sodium toxicity are leaf burn, scorch and necrotic (dead) tissue along the outside edges of leaves. The symptoms occur first in the oldest leaves. As the severity increases, the symptoms move inwards between the leaf veins towards the centre of the leaf. Sodium toxicity usually decreases in the presence of calcium. Because of this interaction, the sodium adsorption ratio is used for the evaluation of potential sodium damage. Sodium toxicity contrasts with chloride toxicity where leaf burn starts at the leaf tip.

Woody plants (e.g. vines and fruit trees) are particularly susceptible to sodium toxicity. Injury can occur in avocado, citrus and stone fruit at soil:water sodium levels of 115 mg/L. In woody trees, the negative effects of sodium may not be seen for some time as the tree will accumulate sodium in the trunk and roots, with the trees becoming increasingly sensitive over time. Most other plants are more resistant to sodium damage as they can exclude the uptake of sodium at the roots when exposed to low to moderate sodium concentrations (Appendix 7.6, page 78).

Under high sodium concentrations or with poor soil aeration, the ability to restrict sodium uptake can be lost, leading to accumulation in the leaves and subsequent toxicity. Sodium may also be absorbed directly through the leaves. For approximate sodium and chloride concentrations in irrigation water at which foliar injury occurs for a variety of amenity horticultural species see Appendix 7.6, p 78.

Indirect effects of sodium

High levels of sodium in the soil can interfere with the uptake of potassium and calcium by plants. Potassium and calcium are both essential plant macronutrients and interference in uptake can lead to deficiencies in these nutrients. Calcium also helps plants select what is taken up through the roots, enabling them to take up potassium while excluding sodium.

Sodium and potassium

- It is unlikely that application of potassium to the soil will correct sodium-induced potassium deficiency.
- Foliar fertilisation may be considered, however its effectiveness needs to be assessed.
- Addition of calcium may help the plant to take up potassium instead of sodium see below.

Sodium and calcium

Calcium application in the form of gypsum is likely to help by:

- Reducing sodium-induced calcium deficiencies.
- Increasing potassium uptake by allowing the plant roots to be selective in taking up potassium rather than sodium.
- Improving general plant health by improving soil structure affected by sodicity (Section 4.6, p 41).

Chloride toxicity

Chloride is an essential plant micro-nutrient, all plants need a small amount of chloride in order to function and grow. Chloride is usually readily available to plants, is found in soil and water, and is easily absorbed by roots and leaves. However, high concentrations can lead to chloride toxicity and can also reduce production through imbalances with other nutrients.

Like sodium, high chloride can be damaging to plants through soil uptake and through direct application to leaves as irrigation water.

Visible symptoms include leaf burn at the tip of older leaves which progresses back into the leaf blade, premature senescence (seasonal wilting of leaves and flowers), bronzing and defoliation.

Similar to sodium toxicity, most non-woody species are not specifically sensitive to chloride toxicity, with the exception of many leguminous species (nitrogen fixing species including pasture plants like clovers and medics) and some cultivars of beans and soybeans. Woody plants are generally more susceptible to chloride toxicity, depending on species, cultivar and rootstock.

Indirect effects of chloride

Chloride can compete with nitrate-nitrogen and phosphates for uptake by plant roots, and high levels of chloride in soil water can reduce the uptake of nitrate and phosphates by plants. Nitrogen and phosphorus are both essential plant nutrients and reduced uptake can lead to deficiencies of these nutrients.

High levels of chloride can also make cadmium in the soil more available to plants, increasing plant cadmium uptake and leading to potential health risks if the plant is eaten. The impacts of cadmium and its interactions with chloride are discussed in the section on cadmium (Section 4.8, p 48).

Chloride and nitrate

The interaction between chloride and nitrate seems to operate in the reverse as well. Application of more nitrate than required for optimum growth leads to decreased chloride leaf damage in avocado and citrus. Therefore, increasing the nitrate supply (or using nitrate rather than ammonium fertilisers) may both improve nitrogen nutrition status and provide a way to reduce chloride toxicity in sensitive plants under saline conditions.

However, this approach can lead to nitrate over-supply, contamination of groundwater and offsite environmental risks. Over-supply of nitrate to manage chloride toxicity should only be used when sensitive plants are grown under conditions of high chloride, and should be carried out with great caution.

Chloride and phosphorus

The addition of phosphorus may help relieve chloride-induced phosphorus deficiency.

Managing sodium and chloride toxicity

The complexity of interactions between sodium, chloride and other nutrients shows the importance of maintaining a balanced soil nutrient composition in order to maintain plant health under saline conditions. A number of measures can be taken to manage affects of high sodium and chloride concentrations:

• Tissue and soil testing are a good way to identify deficiencies and toxicities and can assist in plant selection.

- Select plants and root stocks that have higher tolerance of salinity, sodium and chloride toxicity.
- Select plants with lower sodium and chloride adsorption rates.
- Choose an irrigation method and schedule irrigations so as to reduce the concentration of sodium and chloride on leaf surfaces and reduce toxic salt uptake:
 - a. Use drip or subsurface drip irrigation to reduce/eliminate leaf-water contact
 - b. Increase the rate of irrigation to reduce the time for leaf adsorption.
 - c. Shandy irrigation water to improve water quality, reducing sodium and chloride toxicity.
 - d. Following irrigation with saline water, irrigate with high quality water to wash salts from leaf surfaces.
 - e. Irrigate at night to reduce evaporation and water uptake rates.
- Maintenance of soil structural and hydraulic properties allowing the leaching of sodium and chloride so that they accumulate below the plant root zone:
 - a. Adding appropriate amounts of calcium in the form of gypsum may help improve salt tolerance and reduce sodium-induced calcium and potassium deficiency in plants.
 - b. Apply organic matter to improve soil structure. The application of surface mulch will reduce evaporation and accumulation of sodium and chloride at the surface.
 - a. Chlorides are easily leached as they are not readily adsorbed to the soil.

4.6 Sodicity

Some recycled water can contain relatively large concentrations of sodium (180 mg/L) compared to other cations like calcium (35 mg/L) and magnesium (19 mg/L - Appendix 7.4, p 76) leading to a high sodium adsorption ratio (see Measuring sodicity, p 43). This can change the cations in the irrigated soil; potentially causing the soils to become sodic, decreasing soil permeability and impeding movement of water through the soil. Sodium in recycled water comes from drinking water, industrial wastes, detergents, salt water incursions into sewer systems, and water softeners.

Any impediment to the application of a leaching requirement will impact on the removal of salt and hence cause it to accumulate. In time this salt can reduce plant health and production, increase the need for leaching and further exacerbate problems associated with sodicity and salinity.

Sodic soils

A soil is sodic when sodium constitutes a significant proportion of the total cations on the exchange complex (particularly in relation to calcium and magnesium). In sodic soil, there is sufficient sodium to interfere with its structural stability, often affecting plant growth.

Sodicity in soils can lead to a number of other problems including accumulation of salts, poor root penetrability and poor microbial health. Dispersion caused by sodicity can decrease water movement through soil, leading to accumulation of salts (Figure 8), and is therefore considered a significant barrier to sustainable irrigation practice.

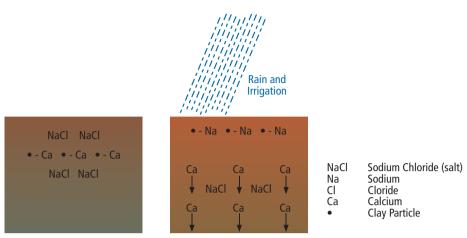


Figure 8 Saline soil being leached by rain (left) to form a sodic soil (right). Sodium salts, chloride and calcium are washed through the soil leaving sodium in the surface layers bound to clay particles. Source: Kelly and Rengasamy 2006.

Sodic soils containing clay disperse spontaneously into single soil particles when wet. The amount of dispersed clay is also affected by soil clay content, mineralogy, soil solution constituents (e.g. salinity), and organic matter content. A measurement of the level of dispersion can be used as an indicator of the sodicity of a soil (Figure 9).

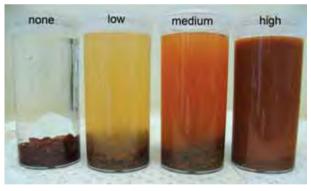


Figure 9 Levels of soil dispersion due to increasing sodicity.

Sodic soils tend to suffer from poor soil structure with characteristics including:

- Hardsetting
- Hardpans
- High soil strength upon drying
- Surface crusting
- Rain pooling on the surface.

These characteristics can cause problems with water infiltration, drainage, plant growth, cultivation and access of equipment. These problems can lead to significant management and sustainability problems for irrigated sites.

Salinity and sodicity are separate issues (e.g. a soil can be sodic without being saline, or sodic and saline).

Soil structure is the arrangement of soil aggregates (clumps) and pores (spaces filled with air and water) that make up the soil (Figure 10). Well-structured soils are easily broken up into small aggregates (1–20 mm diameter) that stay together when wetted. They also have an adequate mix of small and large pores to allow drainage, aeration and movement of roots through soil, while retaining water for plant use in small pores (Figure 10). Sufficient soil calcium and organic matter content can generally help to maintain or improve soil structure.

Biopore created by plant root or soil microorganism

Figure 10 Well structured soil. Source: Anderson *et al.* 2007.

Under conditions of high sodicity, clay soils may swell and individual clay particles disperse or separate from soil aggregates when wetted. Soil aggregates may collapse and the tiny clay particles can block soil pores. On drying, the soil becomes hard, dense and cloddy, with poor structure.

Measuring sodicity

Water

The sodium adsorption ratio (SAR) is commonly used to assess the potential hazard from sodium affecting soil permeability. The SAR of irrigation water (SAR) can be calculated using Equation 1 if cation concentrations are in milliequivalents or Equation 2 if cation concentrations are in mg/L. Units for SAR are (mmolc/L)^{0.5}. The acceptable SAR values of irrigation water vary with the soil type irrigated (Table 12).

Equation 1 Calculation of sodium adsorption ration (SAR) using milliequivalent concentrations (meq/L)

$$SAR = \frac{Na + \frac{Na}{\sqrt{\frac{Ca^{2+} + Mg^2}{2}}}$$

where concentrations of cations are expressed in meq/L.

To convert from mg/L	to meq/L
Na (mg/L)/23	= meq/L
Ca (mg/L)/20	= meq/L
Mg (mg/L)/12.2	= meq/L

Equation 2 Calculation of sodium adsorption ration (SAR) using milligram per litre concentrations (mg/L)

$$SAR = \frac{\frac{Na}{23}}{\sqrt{\frac{Ca}{20} + \frac{Mg}{12.2}}}$$

where concentrations of cations are expressed in mg/L.

Table 12 Relationship between acceptable sodium adsorption ratio (SAR) of irrigation water and soil texture.

	Acceptable irrigation water SAR				
Soil texture	Median	Range ^A			
Sand, sandy loam	20	>20			
Loam silty loam	10	8-20			
Clay loam	8	5-13			
Light clay	6	5-11			
Medium to heavy clay	4	4-5			

Arelated to charge of clay

Source: modified from ANZECC and ARMCANZ 2000, p 9.2.3

Note: subsoils should also be considered to ensure that deep leaching is possible if required.

Soils

The sodicity class of the soil can be calculated by analysis of the exchangeable cations in a soil. The exchangeable sodium percentage (ESP) is then calculated (Equation 3) and the sodicity class of the soil and likelihood of dispersion determined by referring to Table 13.

In Australia, soils with an ESP ≥ 6 may be sodic (Rengasamy 2002). Such soils tend to have a relatively high pH (approximately 7–10), as sodium carbonate is much more soluble than calcium or magnesium carbonates; thus, higher concentrations of carbonate and bicarbonate are maintained in sodic soil solutions (Rengasamy and Olsson 1991, Brady and Weil 1999). However, although uncommon in Australia, some acidic (approximately pH 5) sodic soils can be found (Rengasamy and Olsson 1991).

Equation 3 Exchangeable Sodium Percentage

$$ESP = 100 \ge \left(\frac{Exch.Na}{CEC}\right)$$

where Exch.Na = Exchangeable sodium and CEC = Cation Exchange Capacity (i.e. the sum of exchangeable Ca+Mg+Na+K)

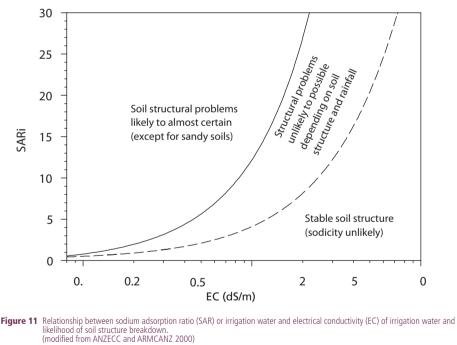
Table 13 Soil sodicity class and dispersion.

Sodicity Class	Exchangeable sodium percentage	Dispersion	
Non-sodic	<6	None	
Low sodicity	6-10	Low	
Moderately sodic	10-15	Medium	
Highly sodic	>15	High	

Note: Dispersion also depends on the soil type i.e. clay content and clay type (Table 12).

Soil sodium adsorption ratio (SAR) can also be measured and used to determine the risk of a soil becoming sodic. SAR is traditionally used for assessing water (see above), however, since SAR is easier to measure in soil than ESP, many researchers have developed relationships between soil SAR and ESP (Sumner *et al.* 1998, Stevens *et al.* 2003), but these tend to be specific to the soil in which they were derived.

The soil SAR (SAR1:5) is measured by mixing 1 part soil with 5 parts of water for a specific time (e.g. 1 hr) and the concentration of Ca, Mg and Na measured in the water from the mix. SAR is then calculated as show in Equation 1 or Equation 2.


The ESP of some soil in Australia can be estimated (Rengasamy *et al.* 1984) from SAR1:5 by using Equation 4.

Equation 4 Estimation of exchangeable sodium percentage (ESP) from sodium adsorption ratio (SAR).

$ESP = (1.95 \times SAR1:5) + 1.8$

Water quality and the likelihood of a soil becoming sodic

When assessing irrigation water for sodic impacts on a soil the salinity of the water should also be assessed. As water or soil salinity increases, it can suppress the on-set of dispersion (Figure 11). Soil texture can also influence the impacts from sodic (high SAR) recycled water. As a general rule, the higher the clay content or heavier the soil the greater the chance of sodicity being displayed (Table 12).

Another measure required to ensure SAR calculations will not be impacted by carbonates is the residual sodium carbonate (RSC). RSC gives an indication if carbonates will impact on Equations 1, 2 and 4 and if sodium (Na) will build up in the soil. The more positive the greater the chances of sodium build up (Carrow and Duncan 1998, p 59). The RSC of recycled water can be calculated with Equation 5 below.

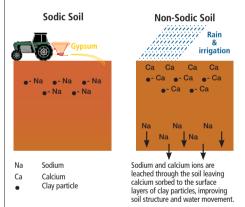
Equation 5 Calculation of residual sodium carbonate (RSC).

$$RSC = (CO_3^{2-} + HCO_3^{-}) - (Ca^{2+} + Mg^{2+})$$

where concentrations of cations and anions are expressed in meq/L. To convert from mq/L to meq/L:

 $Ca^{2+} (mg/L)/20 = meq/L$

 Mg^{2+} (mg/L)/12.2 = meq/L


 CO_3^{2-} (mg/L)/30 = meq/L HCO_3^- (mg/L)/61 = meg/L

If the RSC is less than zero, the likelihood of sodium accumulation on soil cation exchange sites is low. If RSC is 0–1.25 meq/L, the likelihood is moderate; if RSC is 1.25–2.5 meq/L, the likelihood is high; and if RSC is greater then 2.5 meq/L, the likelihood is very high (Carrow and Duncan 1998).

Managing sodicity

Soil additives

Soil sodicity is created when calcium is displaced by sodium in the soil (discussed above). Similarly, sodicity can be amended through the application of calcium - which displaces sodium (Figure 12) which is then leached away.

The application of gypsum is the most cost effective method of ameliorating sodic soil (Table 13; Table 14). It is important to note that another source of calcium is lime. Lime has very sparing solubility and should only be used in situations where the soil pH is less than 6 and the desired effect is to supply both calcium for sodicity and carbonate for pH amelioration. In these cases combinations of both lime and gypsum are most effective.

Figure 12 Correction of sodic soil. Source: (Kelly & Renagasamy 2006)

Table 14 Soil dispersion and pH related to gypsum and lime application rates required for the correction of sodicity.

Dispersion	pH >6 Gypsum (t/ha)	pH <6 Gypsum + Lime (t/ha)
None	0	0
Low	2.5	1.25 + 1.25
Medium	5.0	2.5 + 2.5
High	10.0	5.0 + 5.0

Source: Kelly and Rengasamy 2006.

Note: t/ha \times 0.1 = kg/m²

Soil structural stability and organic amendments

Soil organic matter improves soil structural stability. Organic matter also benefits the soil by:

- Increasing water holding capacity
- Decreasing erosion losses
- Supplying nutrients for plants and food for microorganisms
- Increasing nutrient holding capacity

Developing and maintaining sufficient organic matter in the soil should be an essential part of any integrated approach to the management of sodicity and associated structural problems.

There are generally two recognised methods for building soil organic matter:

- Growing and incorporation of plants (green manure)
- Addition of organic amendments like animal manures and composts. Care should be taken when applying manures as they may contain significant amounts of salt and the nutrients they contain need to be considered in nutrient budgets.

4.7 Boron (B)

Special care is needed in the management of boron because there is only a small concentration range in soils between plant deficiency and toxicity. Uptake and removal of boron by plants is usually less than input from soil minerals and irrigation water, depending on the irrigation water quality. As a result, the excess boron accumulates in the root zone if it is not leached down through soil.

The concentration of boron tolerated in irrigation and soil water by various agricultural plants without reduction in yield or vegetative growth is given in Appendix 7.7, p 97. These values provide a guide only, as the rate of uptake of boron by plants (and therefore their tolerance) depends on a range of other factors such as soil texture. Generally, higher uptake rates are seen in sandy soils and lower rates in clayey soils. Uptake rate is also much lower in a soil pH range of 7.5–9.5 and plants can tolerate higher soil boron levels in this range.

Typical symptoms of boron toxicity first appear in older leaves and include a yellowing and brown speckling pattern found between the veins and near the edge of the leaf (Figure 13), followed by the edges gradually turning brown and dying (necrotic tissue). Other symptoms include yellowing (chlorosis), tip burn, cupping of the leaves, reduced size, premature leaf drop and the development of a red, pink, purple or bluish band surrounding the edge of a chlorotic leaf (anthocyanins). Yield reductions are likely to occur before visible symptoms occur, so tissue analysis is an important tool to assess any potential for growth impacts resulting from boron toxicity.

Figure 13 Boron damage in eucalyptus leaves. Source: Tanji *et al.* 2007 courtesy of the WateReuse Foundation

How can boron be managed?

Because of tolerance variations between different plant varieties, one method of management is to grow more tolerant plant species or varieties in areas with high boron concentrations in irrigation water or soil.

Boron can be leached from soil by rainfall or irrigation leaching fractions. However, leaching of boron can be difficult because the rate of removal can be much slower for boron than for other salts, as boron can be attracted to or absorbed by soil particles, requiring about three times more water to leach than more soluble ions such as CI and Na. In many cases, leaching is unlikely to provide a permanent solution because boron will be re-supplied through irrigation water and the breakdown of naturally occurring boron-containing minerals in the soil.

Boron in recycled water may be a direct hazard to plants irrigated with the water or indirectly if it builds up in a soil. Boron sensitive plants (Appendix 7.7, p 97) should not be grown with recycled water containing greater than 0.5 mg B/L.

Management tools

Management tools include:

- •Boron concentrations of \leq 0.5 mg/L in recycled water are manageable in most situations.
- Site specific soil tests are required to determine if there are existing elevated boron concentrations in soil to be irrigated.
- Plant selection. Care should be taken to avoid growing boron sensitive plant species, if boron concentrations in recycled water exceed 0.5 mg/L.

There are a range of plant sensitivities to boron (Appendix 7.7, p 97), and these should be considered along with the soil type and concentration of boron in recycled water. Care must be taken if these sensitive plants are grown, especially on heavier textured soils which may already have elevated boron concentrations.

4.8 Heavy metals and other chemicals of concern

Heavy metals

Most heavy metals of concern are removed from recycled water during treatment and end up in the solids or biosolids (Figure 1). Guidelines for heavy metals in recycled water are usually stricter than other water quality guidelines. Concentrations of heavy metals should be checked against those in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC and ARMCANZ 2000), but usually are not found to be a problem.

Cadmium (Cd)

Cadmium concentrations in recycled water are generally low and monitored by the water supplier. The higher the level of treatment, the lower the relative concentration of cadmium. However, irrigation of plants with recycled water can increase plant uptake of cadmium already present in the soil. For example, recycled water can be high enough in chloride (i.e. >350 mg/L) to increase the chance of cadmium uptake by the plant if the soil is relatively sandy. Plant uptake is generally only an issue if it is a food or fodder crop, leading to increases in levels of cadmium in plants or animals eaten by humans.

Ideally the concentration of cadmium in irrigation water should be less than 0.01 mg/L or less than 0.05 mg/L for short-term use (<20 years) (ANZECC and ARMCANZ 2000, p 9.2-55). If greater than 2 kg/ha is applied during irrigation then cadmium concentrations in soils should be checked.

If growing plants where cadmium could accumulate and they could be eaten by animals (e.g. humans, pets), management techniques should include:

- Using low cadmium phosphorus fertilisers, especially on sites already contaminated.
- Testing soil cadmium levels.
- Using a mix of recycled water and fresher groundwater to reduce the chloride concentration if cadmium concentrations are high in produce.
- Adjusting soil pH if necessary.
- Selecting plant varieties with low uptake of cadmium.
- Increasing soil organic matter.
- Adding zinc if necessary.

Copper (Cu) and zinc (Zn)

Copper and zinc concentrations in recycled water are usually insufficient to meet plant nutrient requirements. However, these metals can accumulate in soils after irrigation for 20 to 100 years and concentrations in recycled water should be checked against guideline values to ensure soil contaminant loadings are monitored. (see ANZECC and ARMCANZ 2000).

Ideally the concentration of copper in irrigation water should be less than 0.02 mg/L or less than 5.0 mg/L for short-term use (<20 years) (ANZECC and ARMCANZ 2000 , p 9.2-55). If greater than 140 kg/ha is applied during irrigation then copper concentrations in soils should be checked.

Ideally the concentration of zinc in irrigation water should be less than 2.0 mg/L or less than 5.0 mg/L for short-term use (<20 years) (ANZECC and ARMCANZ 2000, p 9.2-66). If greater than 300 kg/ha is applied during irrigation then zinc concentrations in soils should be checked.

Chlorine residuals (Cl₂)

Recycled water is often chlorinated as a disinfection treatment to minimise pathogens. However, high concentrations of residual chlorine in recycled water can have a negative impact on plants irrigated with the recycled water (Table 15). Usually residual chlorine in recycled water is less than 1 mg/L.

Table 15 Effect of residual chlorine in recycled water on plants sprinkler irrigated with recycled water.

		Degree of restriction on sensitive plants with sprinkler irrigation					
Hazards	Unit	None	Slight to moderate	Severe			
Residual Chlorine	mg/L	0–1	1–5	>5			

Source: Pettygrove and Asano 1985, p 3-11, Asano et al. 2007 p 956

Chlorine can also react with ammonia in recycled water to form chloramines, or chloramines can by used directly to disinfect water. Monochloramine (generally the dominant form of chloramine) is usually considered less toxic than chlorine (Table 15). However, there is limited data available for most plants and some may be more sensitive than others.

High chloride levels can increase uptake of cadmium by plants

Endocrine disruptors (EDC)

Water recycled from wastewater treatment plants is usually low in chemicals that can alter normal endocrine function in animals, i.e. endocrine disrupting chemicals (EDCs) and personal care products and pharmaceuticals. At this stage, there is no evidence that irrigation with recycled water can have a negative impact on the soil and plants irrigated or the immediate environment. Human health concerns are even lower considering the low exposure when irrigating with recycled water.

4.9 Irrigation

Understanding irrigation requirements and managing irrigation rates is one of the most important components of using recycled water as it allows management of:

- •Water supply and minimising plant water stress.
- Nutrients applied with recycled water (Section 4.3, p 27).
- Soil salinity (Section 4.4, p 32).
- Water to remain on site.

A simple definition of irrigation requirements is the difference between the plant water requirement and the depth of rainfall at a location (Allen *et al.* 1998). Rainfall can be measured using standard meteorological equipment, but the plant water requirement is more complex.

For plant requirements to be met, additional water is required to overcome inefficiencies in irrigation method (i.e. effective irrigation is different to actual) and to leach salt down the soil profile. For steady state conditions the leaching fraction (LF) is defined as the volume of drainage water (passing the root depth) divided by the volume of infiltrating irrigation water. The leaching requirement (LR) refers to an estimate of what the LF must be to ensure soil salinity remains within tolerable limits for the specific plants grown. This steady state approach is usually a good estimate for long term changes in soil salinity. However, it assumes uniform application and does not consider salt precipitation or dissolution, irrigation frequency effects, preferential flow, upward water flow, water chemical composition and salt removal in surface runoff (Corwin *et al.*, 2007). There are several transient models available to estimate short-term soil salinity changes from irrigation. However, these are not discussed here, as good soil monitoring will give direct feedback as to the appropriateness of scheduling and application of irrigation water.

Irrigation requirements

Irrigation requirements (IR) can be calculated from pan evaporation (PE) and a crop factor (CF). Rainfall (RF) measurements should also consider rainfall that:

- Leaches through the root zone of the soil causing deeper percolation where water is inaccessible by the plant.
- Evaporates before it is used by the plant (i.e. lands on leaf area and evaporates).

To consider these losses of rainfall a rainfall efficiency factor (Erf) is used. This is usually a percentage of RF. The IR should also consider any requirements for leaching (i.e. the leaching requirement; LR) and the efficiency of the irrigation system using the irrigation efficiency factor (Eir).

The efficiency of applied water when irrigating (Eir) can be calculated using Equation 6 (Asano *et al.* 2007).

Equation 6 Irrigation efficiency factor

$$Eir = \frac{I_{ben} (mm)}{I_{app} (mm)}$$

Where:

Eir = Irrigation efficiency

Iben = Water used beneficially (i.e. not lost in wind drift, runoff, or excess application leading to deep percolation in excess of LF due to low distribution uniformity, but accessible to the plant for evapotranspiration, plant cooling and leaching of salts)

 I_{app} = Water applied to field (e.g. irrigation water applied)

The irrigation requirement can be calculated using Equation 7, which considers all the factors discussed above.

Equation 7 Irrigation requirement

$$IR = \frac{(PE \ge CF) - (RF \ge Erf) + LR}{Eir}$$

Where units are: IR (Irrigation requirement) = mm Eir (Irrigation efficiency factor) = unitless PE (Pan evaporation) = mm CF (Crop factor) = unitless RF (Rainfall) = mm Erf (Rainfall efficiency factor) = unitless LR (Leaching requirement) = mm

Crop factors (CF)

The CF can be considered the percentage of pan evaporation (PE) used by the plant and lost from the soil via evaporation (Evapotranspiration).

Crops factors (CF) vary considerably depending on the plant type, plant density and the visual appearance desired (Table 16). Crop factors also vary depending on the plant's stage of development. The crop factors in Table 16 give good indications of typical average crop factors for a range of amenity horticultural plants. More detailed crop factors and method for calculation of crop factors are available online (UCCE and CDWR 2000).

Table 16	Approximation of cr	rop factors (CF) for turf a	and ornamental plants.

		Desired look of plant							
	Excellent (Premium)	Great (Strong)	OK (Medium)	Just OK (Low)	Surviving (minimal)	Range (CF±)			
Plant type			Crop	factor ^A					
Turf – warm season	0.625	0.5	0.325			0.08			
Turf – Cool season	0.825	0.725	0.675			0.10			
Ornamentals	0.775	0.65	0.4	0.3	0.1	0.05			
Vegetables	0.85	0.7							
Comments	Vigorous lush growing broad leaf	Strong growth	Some drought tolerance required	Moderate drought tolerance required	Desert plants				

Source: Handreck and Black 2002

 A Crop factor × Class A Pan evaporation = plant water requirement (mm). These factors apply when at least 70% of the surface soil is shaded by the plant, if less they can be reduced by 0.1-0.3.

Note: These numbers are rough guides only, measures should be made on-site. For example, plants become larger in containers and their crop factor can increase to as high as 4.

Reference evapotranspiration

Another term is also used to estimate irrigation requirement, similar to the crop factor and pan evaporation. This term is reference evapotranspiration (ETo) and is the rate of evaptranspiration from a healthy grass, completely covering the ground to a uniform height of 75 to 125 mm, and having an adequate supply of water with no microclimate factors influencing it. A crop coefficient (Kc) is used to determine another specific crops evapotranspiration (ETc) from the ETo. So ETc = Kc × ETo. As a rough guide CF are approximately 80% of Kc values (e.g. if Kc = 0.6 then CF = 0.48).

Irrigation distribution uniformity

Even distribution of water when irrigating is very important. If uneven, parts of the irrigated area will be overwatered and others underwatered. For sprinkler irrigation, distribution uniformity can by measured with catch-cans distributed in a grid layout throughout the irrigated areas. The catch-cans will collect irrigation water during the irrigation event. By measuring the water level caught in each can, a coefficient of uniformity can be calculated. A similar technique can be used to assess dripper line measuring the volume from each dripper.

A coefficient of uniformity greater than 75% is acceptable for deep rooted permanent horticultural plants and it should be greater than 85% for shallow rooted plants (e.g. turf and garden beds).

To calculate the coefficient of uniformity (CU):

$$CU\% = \left(1 - \frac{Tot}{A \times No. Cans}\right) \times 100$$

Where:

А

= Coefficient of Uniformity

= Average depth of water delivered in irrigation event (mm)

Tot = Total sum of difference between each individual reading and the average (A).

No.Cans = Number of catch-cans used.

Source: Handrick and Black, 2002

Best practice irrigation

Once established, best practice irrigation for amenity horticulture should minimise feeding (fertiliser use), watering and mowing/pruning, while maintaining the desired appearance. Adherance to these best practices also minimises impacts on the environment by minimising fertiliser/chemical use and conserving water. With recycled water efficient irrigation will also minimise the nutrients supplied with the recycled water. Some plants may also require less water and fertilisers so plant selection can also help meet environmental goals.

Irrigation techniques should:

- Apply the required water efficiently to different areas (e.g. shrubs, require different water to turf, different turf species and uses often have different water requirements).
- Apply water evenly, despite wind or other influences.
- Provide sufficient water when required considering:
- plant growth rate
- soil type
- daily evaporation rates
- wind effects
- available soil moisture
- •Use modern soil moisture and air sensing devices such as:
- tensiometers
- soil moisture sensors
- relative humidity measuring devices
- wind speed detectors.

- Allow multiple applications of water per day (referred to as pulsing) for establishing or rehabilitating areas.
- Apply coarse water droplets to reduce evaporation and wind effects (i.e. careful with young plants).
- Contain flow protection devices to isolate sections if there is a reticulation problem and a warning system to identify malfunctions.
- Irrigate at the coolest part of the day to minimise evaporation losses.
- Irrigate when there is least wind movement.

Irrigation Australia has published a summary of best practice for urban irrigation (IAA 2006). See www.irrigation.org.au/index.cfm?/publications/bookshop

Irrigation management and scheduling

Irrigation scheduling is an important component of the irrigation management strategy. It ensures that the correct amount of water is applied when required. There are a range of methods for irrigation scheduling that are typical for any irrigation system.

Ultimately texture and structure of the soil dictates its water holding capacity and the water which will be available to the plant grown in the soil. Water should be applied to suite the root depth of the plants irrigated. For example, with turf the top 20 cm of the soil contains the predominant root mass. Therefore any water passing this point will not be available to the plant and will contribute to leaching of water and potentially nutrient losses.

For example, if the plants root depth is 20 cm, there is 20 cm of soil available to hold water. If the soil is a sandy loam texture, for every 1 cm of soil it will hold 1 mm of water (Table 17 – appearance great). That is, approximately 20 mm of water is held by the soil which is available to the plant.

	Level of growth/appearance							
	Excellent (Premium)	Great (Strong)	OK (Medium)	Just OK (Low)	Surviving (minimal)			
Soil Texture		mm of water available/cm depth of soil						
Sand	0.3	0.4	0.5	0.6	0.6			
Loamy sand	0.4	0.6	0.7	0.8	0.9			
Sandy loam	0.6	1.0	1.1	1.2	1.3			
Loam	0.9	1.5	1.7	1.8	2.0			
Clay poor structure	0.5	0.8	1.0	1.1	1.3			
Clay good structure	0.7	1.1	1.3	1.6	1.9			

Table 17 Plant available water (at field capacity) if plants are maintained as indicated.

Source: Handreck and Black 2002

If you use the average daily pan evaporation (PE) rates for Melbourne, the average water requirement for a plant and water lost from the soil surface can be estimated (i.e. evapotranspiration rate or ET). For example, in January the average daily PE is 7.8 mm/day (Table 18). If you are growing a warm season turf the approximate crop factor (CF) is 0.5 (Table 16; CF × PE = ET). So for the example above, the soil can hold 20 mm of water for the plant, the plant will use 3.9 mm/day (0.5 x 7.8), or the equivalent of 5.1 days of water (20/3.9).

A good watering of 20 mm every 4-5 days should be adequate to maintain warm season turf with a great appearance through January near the Melbourne airport. Note that these calculations assume average daily evaporation rates. Site specific data should be used were possible to fine tune water requirements. Day to day evaporation can vary significantly and effective rainfall should be factored into these requirements also.

All sites should also have moisture sensors in place or be checked manually by staff daily.

Table 18 Average daily pan evaporation at Melbourne Airport (mm/day).

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
7.8	7.1	5.8	3.9	2.6	2.0	2.0	2.8	4.1	5.2	5.9	7.6

Water storage

Water requirements/demands of specific plants and turfs must be taken into account when designing systems to ensure that on-site storages are built to provide a constant uninterrupted supply of recycled water when demand is at its greatest and when required. Specific individual requirements should be well understood and supply agreements reflect these requirements.

Size

The size of your storage depends on the frequency of supply and total plant requirements for highest demand period. Calculations should also consider losses from the storage through evaporation and any leakages that might occur. Leakage from storages can enter streams, waterways and underground watercourses, with possible environmental impacts.

Requirements

Storages would also need to be constructed in accordance with state guidelines on dams and water storages.

Eutrophication and algae

Due to the high nitrogen and phosphorus concentrations generally found in recycled water, the risk of excessive algal growth or "blooms" may require specific management programs. There is also a risk of drainage water entering offsite aquatic systems. Algae risk management is discussed in Section 4.10, p 59.

Irrigation methods

It is important to match plants, soil, recycled water quality and irrigation methods. There can be no definitive answer as to which type of irrigation system is most suitable for use with recycled water, as there are many site-specific variables. However, it is possible to rank the three main irrigation systems against the key criteria related to irrigation with recycled water.

The main areas of assessment for irrigation systems are usually against water quality parameters, minimising environmental problems (including efficiency of water use) and appropriateness for efficient and economic water delivery. For example, Table 19 indicates surface runoff risk relative to irrigation method and soil texture.

 Table 19
 Risk of surface run off with recycled water irrigation system and soil type.

	Surface run off risk		
Soil texture	Drip	Sprinkler	Furrow
Sand	Low	Low	Low
Loam	Low	Medium	Medium
Clay	Low	High	High

Source: Stevens et al. 2006 Table 6.7 p 121.

Sprinklers/Sprayers

Sprinkler irrigation is commonly used in horticulture. Sprinklers are systems that apply the water over the whole plant and ground area. For nurseries, sprinklers are generally overhead systems wetting the whole area, but for larger growing systems like golf courses sprinklers are commonly found low to the ground or as popup sprinkler systems.

Application rate can be matched to the soil infiltration rate. Soils with very low infiltration rates (i.e. <3 mm/hour) are prone to runoff and need special measures to increase intake or to provide uniform surface ponding to prevent runoff. Sprinkler irrigation is also suitable for undulating and steep terrain, although surface runoff can still be a problem. Sprinklers have the advantage of providing good germination and plant establishment since small amounts of water can be applied frequently, and with many systems this can be done with low labour requirements. It also has other horticultural advantages in the incorporation/activation of herbicides and fertilisers.

Drawbacks with using sprinklers are: the high capital and operating cost; foliar application of recycled water may cause specific ion injury to plants; higher exposure of recycled water to humans; difficult for aeration as inground sprinklers need to be located before coring; increased risk of plant fungal disease; and decreases in water use efficiency on windy days.

Surface Irrigation

There are many types of gravity flow systems where irrigation progresses from the higher end of the area to the lower (e.g. furrow, contour bay and border check). For irrigation of horticultural plants a high level of control is required to prevent water logging stress and off-site environmental effects. Surface irrigation is not widely used and not recommended in amenity horticulture as an irrigation technique, as it is hard to control and manage.

The main problems associated with surface irrigation are the non uniformity of water application and over irrigation.

Drip Irrigation (Surface or subsurface)

Drip irrigation is likely to be the most suitable form of irrigation for use with recycled water for two important reasons. Firstly, it limits contact of the recycled water with the plant, workers and general public. Secondly, it provides the best control over the application of irrigation water. It leads to reduced environmental impacts (i.e. no irrigation runoff, little rainfall runoff and little drainage past the root zone, if well managed).

Drip is a technologically advanced method of irrigation that can apply water evenly to plants across a landscape. To achieve this water is pumped around the paddock in pipes to emitter points that are at the plant root zone. Irrigation is closely matched to the plant water use on a daily (or sub-daily) basis. Characteristics of drip systems that help achieve this are:

- •Water is applied frequently at low application rates. Drip irrigation can apply water only at low rates (e.g. 5–10 mm/hr). This means that drip systems are operated frequently and are run for long sets. These features are a constraint to irrigation in that large soil water deficits cannot be replaced quickly.
- Water is applied uniformly to all plants.
- •Water is applied directly to the plant root zone.

Drip emitters have passages as small as 0.25 mm in diameter and as such are extremely vulnerable to blockage. The greatest source of non uniformity in a drip system is due to emitter clogging. Recycled water is generally nutrient rich, which encourages algae growth that can lead to dripper clogging. Dripper design should consider: passage width; passage depth; passage area; passage length; anti-suck back features; filtration area; and filter location. When installing drippers ensure that have been designed appropriately so they will be suitable for the type of recycled water that will be used.

A good filtration system with sound system maintenance should minimise the risk of dripper clogging in most situations (Table 20). The best filters are media filters which are pressurised tanks filled with silica sand or crushed granite. The size and number of tanks depends upon the system flow rate and the cleanliness of the water. The filters are kept clean by back flushing. This operation can require large amounts of water compared to screen or disk filters, and a suitable disposal site for this water needs to be found as it will be high in nutrients.

Media filters also need to be chlorinated to control biological activity that may clog them. Media filters are generally considered to be the best all-round filtration device but they are considerably more expensive than screen or disk filters and also take up much more space. Table 20 shows the risks of drippers clogging related to several water quality parameters.

Apart from fertilisers other chemicals need to be applied through the system to keep the laterals and emitters clean. There is also the possibility of applying herbicides, fungicides and nematicides through the system. Soil or water ameliorants can also be applied through a drip system. Some dripper lines include the use of root-inhibiting chemicals (herbicides) to prevent root intrusion. Irrigation with recycled water higher in nutrients might attract roots and drip lines should be monitored and maintained appropriately. Blockages caused by algae or microorganisms can be managed by dosing with chlorine or algaecides. Blockages from chemical precipitation can be managed with nitric or phosphoric acid. In some areas (e.g. Northern Western Australia) white ants may damage drip tape and the use of pesticides may be required to prevent white ant access.

			Impact rating for risk of clogging emitters		
Water quality parameter	Symbol	Unit	Insignificant	Minor	Moderate to high
Total suspended solids (include algae)	TSS	mg/L	<50	50–100	>100
рН	рН		<7	7-8	>8
Total dissolved salts	TDS	mg/L	<500	500-2000	>2000
Manganese	Mn	mg/L	<0.1	0.1-0.5	>1.5
Total iron	Fe	mg/L	<0.2	0.2-1.5	>1.5
Hydrogen sulphide	H ₂ S	mg/L	<0.2	0.2-1.5	>1.5
Bacterial number	Count/100ml		<10,000	10,000-50,000	>50,000

 Table 20
 Water quality parameter relative to the potential for drip emitter clogging.

Source: Asano et al. 2007, p 1068

Chemical injection is a fundamental part of drip irrigation as fertiliser is required. Nutrient distribution under a drip system depends upon the wetting pattern, soil type and rate at which the recycled water and any fertiliser are applied.

Groundwater: perched and rising water tables

Impacts of perched and rising water tables

Irrigation can lead to perched and rising water tables, associated with increasing soil salinity and waterlogging. This can have negative impacts on native vegetation in the same way as for other plant species. Perched and rising saline water tables can also discharge into freshwater systems, which can be particularly sensitive to increases in salinity. For example, some waterplants and insects are damaged or killed at salinities as low as 1000 mg/L or 1.7 dS/m.

Rising water tables can occur when native, perennial, deep-rooted vegetation is cleared and replaced with shallow-rooted plants (Figure 14). Perennial, deep-rooted plants use deep groundwater throughout the year, while annual plants generally only remove water from the upper soil layers during plant growth; which is usually for about 4–6 months of the year. This situation can be aggravated by over-irrigating, which allows even more water to move down to the water table.

How can perched and rising water tables be managed?

To use water accumulating in the groundwater table, retain native vegetation where possible, or plant deep-rooted perennial vegetation (such as trees). Species that are native to the area are likely to be suited to the environmental conditions and will provide habitat for native animals, which may play a role in managing horticultural pests.

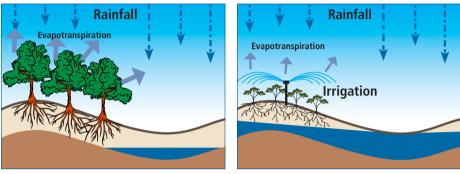


Figure 14 Formation of rising water tables following change of land use.

Best irrigation practices should also be adopted (Section 4.9, p 50) and use only as much water as is required by the plant, plus a leaching fraction to reduce soil salinity if necessary. Using more water than this is wasteful and can lead to rising and perched water tables, causing problems for both horticulture and the environment.

Perched water tables

Perched water tables generally occur when water moving down through soil becomes trapped by an impervious layer of clay or rock close to the surface rather than draining down to the local groundwater table (Figure 15). This is more likely to occur when large amounts of irrigation water are being applied.

Perched water tables' also occur when a relatively coarse mineral material underlies a finer textured material (e.g. gravel under clay or gravel under sand). Water will only normally move into the underlying coarse-textured materials under the force of gravity when this overcomes the surface tension of water in the overlying materials. This usually means that the moisture content of the overlying layer has to be saturated (greater head of water) before any water will move into the material below. Equilibrium is reached where some water will always remain in the fine material ('perched') above the coarse material - unless removed by evapotranspiration. In application, this may pose salinity problems for turf where the perched water table phenomenon is deliberately applied in media construction to provide water storage for turf to access. Without leaching salinity levels could also be a problem for these types of application.

Groundwater

Rising groundwater tables occur when the amount of water moving down through the soil, to the local groundwater table, is continually greater than the removal of water (naturally or by human activity) from that groundwater. This leads to an accumulation of water in the soil, bringing the water table closer to the surface and creating a raised water table (Figure 14). If the water table gets too close to the surface (<a prox. 2m) then water and salts from the water table rise to the soil surface though capillary action. The water brought to the surface evaporates and the salts are left in the surface soil. This process is the opposite of leaching. If further irrigation or rainfall does not leach these salts back down the soil profile, they can accumulate and cause the soil to become saline and/or sodic.

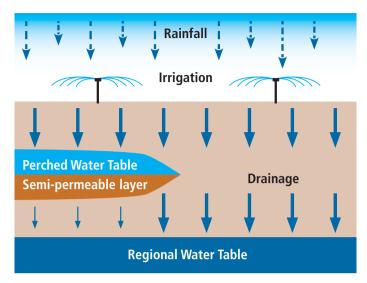


Figure 15 Formation of perched water table.

4.10 Algae management

Algal Blooms

Algal blooms are dense congregations of algae that can form over lakes, dams or streams. Factors that foster algal bloom formation and growth include:

- Temperature
- •Light
- ∙рН
- •The availability of nutrients
- •Lack of competition from other micro-organisms
- The absence of predators.

Any water containing sufficient nutrients (N and P particularly) will potential form algal blooms if other conditions are conducive. Long periods of dry stable warm weather provide favourable conditions for algal growth.

Potential Problems

Algal blooms can cause major problems for the natural ecosystems including fish mortalities, and can interrupt water supply for towns and cities and limit recreational activities. These problems are mostly caused by blooms of cyanobacteria (commonly called 'blue-green' algae) which often produce toxins which are harmful to human and animal health. Species in Australia which are commonly found to be toxic are *Microcystis* and *Anabaena*.

Algae that flourish in secondary treatment lagoons and winter storages may pose a risk to the adequate treatment and distribution of recycled water during bloom events. Generally, algae applied to turf via recycled water will not affect animal health provided the appropriate withholding periods are implemented and animals are allowed access after turf has dried. There is, however, a greater risk to animal health associated with drinking recycled water containing blue-green algae.

Managing algae growth

The best method for management of algae is to limit their growth by manipulating the factors discussed above that influence their growth. For example, restrict light, introduce predators or minimise storage time. Different algae may also live in different depths of the water storage. If this is the case, adjustment of water intake can minimise algae intake into the irrigation system. If a toxic bloom is identified it is very difficult to remove the toxins.

Algae Assessment

It is preferable to examine live samples for taxonomic identification of algae. If this is not possible storage of specimens can be preserved in a solution of 70% alcohol, 25% water and 5% glycerol. With storage, many features such as colour or the presence of flagella may be lost or changed making them more difficult to discern.

Additional information on algae

Has your dam got a blue-green algae problem? (Thomas and Martinelli 1999)

Minimising algae growth in farm dams. (Cummings 2002)

www.dpi.vic.gov.au/dpi/nreninf.nsf/childdocs (then click on Landcare/waterquality). www.health.vic.gov.au/environment/water/bluegreenalgae.htm (CRC for WQT 2004)

Monitoring Programs

In Victoria, all monitoring, reporting and auditing procedures and programs for recycled water use should be documented in the Environmental Improvement Plan (EIP). Audit programs for schemes that use greater than 1 ML per day should comply with the principles in *ISO 14010's Guidelines for Environmental Auditing* or equivalent. The proponent of the reuse scheme should ensure that an appropriately qualified independent auditor or internal expert undertakes the audit (EPA Victoria 2003). See section 8 and 9 of the Victorian Guidelines (EPA Victoria 2003) and Section 7.1, p 72.

5.1 General principles

Monitoring can be undertaken for a range of purposes. The principal types of monitoring are:

- 1. Baseline monitoring (i.e. 'where are we now?')
- 2. Validation monitoring (i.e. 'will it work?')
- 3. Operational monitoring (i.e. 'is it working now?')
- 4. Verification monitoring (i.e. 'did it work?').

The main functions of each of these types of monitoring are given in Table 21 below.

Table 21 Purpose of main types of monitoring.

Type of monitoring	Main functions
Baseline	Gather information that will underpin the risk assessment process and provide a basis for assessing potential impacts of recycled water on the environment
Validation	Obtain evidence that the elements of the recycled water quality management plan will achieve performance requirements
Operational	Conduct a planned sequence of observations or measurements of control parameters to assess whether a preventive measure is operating within design specifications and is under control
Verification	Apply methods, procedures, tests and other evaluations, in addition to those used in operational monitoring, to determine compliance with the recycled water quality management plan, and to determine whether the plan needs to be modified

Monitoring may also form part of the surveillance undertaken as a statutory requirement under license or approval from a regulatory authority. In the context of recycled water quality management, good monitoring programs should:

- 1. Have clearly defined objectives of monitoring, set within the context of the recycled water management plan.
- 2. Be carefully designed, to ensure that the stated monitoring objectives will be met.
- 3. Make clear what data will be gathered, how it will be obtained and how results will be used.
- 4. Use sampling and analytical techniques that are reliable and sufficiently sensitive.
- 5. Include analysis and reporting of data, to provide valuable information on the operation of the recycled water system.
- 6. Be developed in conjunction with stakeholders such as users and regulators or authorities responsible for auditing the performance of the recycled water system.

The range of parameters and the frequency of testing included in monitoring programs will depend on the size of the scheme and the potential exposure associated with the end use. For example, monitoring programs for large urban sewage treatment plants providing recycled water for dual reticulation or unrestricted municipal irrigation will be far more extensive than those for rural sewage treatment plants providing recycled water for drip irrigation of grape vines.

A practical and pragmatic approach needs to be adopted in designing monitoring programs.

5.2 Baseline monitoring

Baseline monitoring is undertaken before establishing recycled water systems, whereas validation, operational and verification monitoring are undertaken when establishing and running a recycled water system. These latter forms of monitoring are common to risk management systems, such as the hazard analysis critical control point (HACCP) approach. For more information see Section 5 of the Australian Guidelines for Water Recycling (NRMMC and EPHC 2006) and the Victorian Guidelines (EPA Victoria 2003). The sampling protocol and analysis methods used in the baseline should be maintained in the verification monitoring program (see Sections 5.3, 5.4 and 5.5).

Monitoring for health and environmental risks follow a similar framework. However, much of the pathogen monitoring is limited to the operation of the wastewater treatment facility and the operation of the water reclamation system. In contrast, much of the environmental monitoring is focused on specific high risks that have been identified in the environmental pathways and endpoints (e.g. organisms, soils, water bodies, air). Two major factors which influence environmental monitoring requirements are the size of the recycled water scheme and the level of risk being managed.

5.3 Recycled water supply monitoring

For all recycled water schemes, the frequency of sampling and monitoring required is relative to the level of risk identified in the maximal risk assessment (i.e. the risk assessment before preventive measures are put into place) and the confidence in a specific preventive measure used to reduce the risk to acceptable levels (e.g. low).

For example, validation of preventive measures can give a level of confidence in the preventive measure and assist in developing the initial monitoring program. Verification monitoring could then improve confidence with the preventive measures used, allowing the initial monitoring program's frequency to be reduced.

Double or multiple preventive measures can also increase the confidence that the specific risk controlled will remain low, minimising the monitoring program. Alternately, if a critical limit is exceeded or target criteria are continually exceeded for relevant environmental indicators, the sample frequency may need to be increased to monitor the associated risks more closely or additional preventative measure applied.

5.4 Soil monitoring

Soil quality should be monitored for recycled water schemes to ensure that there are no adverse impacts on soil structure and quality. Generally, a soil-monitoring program for major schemes should:

- 1. Specify the parameters to be monitored and their frequencies. Soils should be analysed at least every two to three years (including initial baseline monitoring) for pH, electrical conductivity, exchangeable cations, total N, P, K, total cation concentration and sodium adsorption ratio (SAR) or exchangeable sodium percentage (ESP) to determine ongoing changes of key hazards.
- 2. Seek evidence of heavy metal concentrations in soil if the recycled water contains significant heavy metals.
- 3. Monitor standard soil fertility parameters according to the plant specific fertiliser management practices and desired growth. Major soil layers should be identified for each sample site, detailing soil texture, structure, cracking, colour, moisture, rocks and stones, and other biological features. The parameters specified above may be varied based on advice from an appropriately qualified agricultural consultant or soil scientist. Soil moisture should be monitored regularly to determine irrigation scheduling rates.
- 4. Specify the sampling locations. The number and location of sampling locations will depend on the distribution of soil types on the land. If there is little variation, three to five sites (which can be composites) may be sufficient for five to ten hectares. More sites will be required for complex land systems. Personnel with expertise in soil science should be consulted to assist in developing a soil-monitoring program appropriate to the risks the scheme poses and the sensitivities of the site.

A timetable for soil monitoring is ideal.

Field staff should be trained to visually assess the irrigated area in their day to day work in the field. They should look out for changes in soil as outlined in Table 22.

Look for	Possible cause	Management options
Pools of water not infiltrating into the soil	Sodicity	Test soil and apply calcium amendment if required
Erosion from excess irrigation causing surface runoff	Poor irrigation uniformity or scheduling or sodicity (see above)	Check uniformity of irrigation system and adjust if required. Check scheduling and timing of irrigation. Check soil sodicity
Salt scaulds	Excessive salts applied with recycled water or groundwater levels high	Check salinity of recycled water is appropriate for your intended use and check groundwater levels are deeper than 2 m
Bare soil from death or poor growth of grass/plants	Salinity, sodicity or boron toxicity	Check plants sensitivity compared with soil analysis
Soil water holding capacity restricted (i.e. requires water more regularly)	Sodicity leading to degradation of soil structure	Assess soil sodicity (ESP or SAR) and determine if calcium or organic amendment should be applied

 Table 22
 Visual symptoms that may be observed in soil irrigated with recycled water.

Field staff should usually assess

irrigation areas when in the field

5.5 Plant monitoring

The easiest and most effective monitoring for landscapes and turf is visual assessment by an experienced eye. If things look wrong then they probably are, and plant analysis or soil tests will help determin the problem and lead to actions that can be taken to overcome problems. If visual symptoms are identified a leaf analysis may help identify the problem and consequently, how to manage it.

Common visual symptoms that may be observed in plants grown with recycled water are summarised in Table 23.

Look for	Possible cause	Management options
Margins of the oldest leaves yellow and then turn to dark brown or black, spots may develop near veins.	Boron toxicity	Check recycled water concentrations of boron. Adjust as required or plant boron tolerant plants.
Stunted growth, leaves smaller and thicker, more succulent darker green. For woody plants leaf margins often turn yellow, then brown/black as they die.	Salinity	Check salt sensitivity of plant and compare with recycled water salinity and soil salinity. Increase leaching fraction if soil salinity too high.
Leaf burn at the tip of older leaves which progresses back into the leaf blade, premature senescence (seasonal wilting of leaves and flowers), bronzing and defoliation.	Chloride toxicity	Leach soil if high in chloride. Check water chloride levels, dilute if required.
Low wear tolerance of grass.	Potassium supply for plant inadequate	Apply potassium fertiliser at required rates.
Lanky, succulent, weak plants that are susceptible to diseases, do not tolerate dry conditions and easily fall over. Wear tolerance may be affected.	Excess nitrogen	Check nitrogen concentration in recycled water and soil. Modify fertilisation program or dilute recycled water if another water source is available.
Grey, rust or black discolouration of the margins of old leaves, the younger foliage yellows through iron deficiencies. Plants not so sensitive have a dull colour appearance and/or reduced growth.	Phosphorus toxicity	Check phosphorus concentrations in recycled water and soil. Modify phosphorus applications if required.
Root growth impaired.	Sodicity – leading to degradation of soil structure	Assess soil sodicity (ESP or SAR) and determine if calcium or organic amendment should be applied.

 Table 23
 Visual symptoms that may be observed in plants grown with recycled water.

For addition information see Appendix Section 7.10, p 113 and Section 7.11, p 114.

5.6 Water resources

Any nearby water resources (ground or surface waters) should be monitored if there is a risk of contamination from the irrigation of recycled water. As a general rule, the lower the risk the less frequent the sampling required (NRMMC and EPHC 2006). See Chapter 8 of the Victorian Guidelines (EPA Victoria 2003).

5.7 Quality control and quality assurance

Quality assurance (QA) and quality control (QC) procedures are essential components of all phases of the monitoring program. They anticipate and help to avoid likely errors and problems, and ensure that data collected are of a known quality.

Quality assurance is the implementation of checks on the success of the quality control; it includes managerial activities, staff training, data validation, and audits of laboratory and data analysis and management.

5.8 Data analysis and interpretation

Assessment of the environment must be based on a statistically valid sampling program, and monitoring requirements need to be:

- 1. Tailored to the scale of the reuse scheme.
- 2. Mindful of the intended end uses of the recycled water.
- 3. Developed with the relevant regulators or authorities that will be responsible for auditing the environmental performance of the reuse scheme.
- 4. Frequency adjusted, in accordance with performance (e.g. if target or trigger values identified in the risk assessment are exceeded, sampling frequency should be increased; if trigger values are not exceeded, it should be decreased).
- 5. Reported and have information disseminated.

Reporting procedures will often relate to the activities of both the recycled water supplier and user, and will require them to:

- 1. Provide arrangements for the submission of performance reports to authorities, users and the community.
- 2. Identify, as early as possible, acute or chronic health and environmental impacts.
- 3. Identify incidents of non-compliance with guidelines, and ensure that the appropriate people and agencies are notified, and that incident response strategies are effective.
- 4. If required, alter management or monitoring practices to ensure the best protection available for the health of the community and the environment.

Reporting requirements are usually annual, but may vary depending on scheme-specific criteria. Typical best-practice management for reporting will require:

- 1. A list or register of users of recycled water.
- 2. Regular inspections and maintenance of treatment, reticulation and reuse facilities or farms and recording of details.
- 3. Monitoring data specific to preventive measures and environmental protection (analysis undertaken and flows recorded).
- 4. Demonstrated ongoing compliance with the objectives of the guidelines or management plans developed from the guidelines.

- 5. Identification of areas of management or practice that may be improved (i.e. recommend additional preventative measures if required).
- 6. Suppliers making reports available for users on a regular basis.
- 7. Modification to sampling and analysis undertaken as part of management plans, or preventive measures, due to results not complying with trigger levels or reference points.

5.9 Review process

Reviewing the monitoring and reporting program is an important element to ensure that the program remains effective and 'on track' to meet the stated objectives. The review process and its response should be outlined, and regular independent audits of the program should be conducted by appropriately qualified personnel.

Further Information

6.1 Websites

California Irrigation Management Information System (CIMIS). www.cimis.water.ca.gov/cimis/infoEtoCropCo.jsp

Irrigating with recycled water. www.recycledwater.com.au

Cummings D (2002) 'Minimising algal growth in farm dams.' State of Victoria, Department of Natural Resources and Environment 2002, LC0079, Melbourne.

www.dpi.vic.gov.au/DPI/nreninf.nsf/childdocs/-49A21C225110DAB74A2568B30004DB83-9DB564B1D158B03BCA256BC700835FFC-C7D48D071C2F58834A256DEA00294C5B-8C02B879A41DBA01CA256BCF000AD4F8?open

Irrigation Association of Australia. www.irrigation.org.au/standards.html#qi_stds_04

WRF (2007) Managing Salinity of Recycled Water or Landscape Irrigation [CD ROM]. WateReuse Foundation, Alexandria, VA, USA. www.salinitymanagement.org

Your guide to good garden watering. www.irrigation.org.au/download/standards/Home%20Gardener%20FINAL%20web.pdf

6.2 Text books

Carrow RN, Duncan RR (1998) 'Salt affected turf grass sites - Assessment and management.' (Ann Arbor Press: Chelsea Michigan, USA)

Handreck K, Black N (2001) 'Growing media for ornamental plants and turf'. (New South Wales University Press, Kensington)

Asano T, Burton FL, Laeverenz HL, Tsuchihashi R, Tchobanoglous G (2007) 'Water Reuse. Issues, Technologies and Applications.' (McGraw Hill.: New York, USA)

Stevens D (2006) 'Growing Crops with Reclaimed Wastewater.' (CSIRO Publishing: Melbourne)

Myers BJ, Bond WJ, Benyon RG, Falkiner RA, Polglase PJ, Smith CJ, Snow VO (1999) 'Sustainable Effluent-Irrigated Plantations: An Australian Guideline.' (CSIRO Forestry and Forest Products: Canberra)

6.3 Guidelines

See Section 7.1, p 72.

Appendix

7.1 Recycled Water Guidelines

Victorian Recycled Water Guidelines

There are three Victorian guidelines (EPA Victoria 1991; 2003; 2005) relevant for the reclamation of water from sewage effluent in Victoria:

- EPA Victoria (2003) 'Use of reclaimed water. Guidelines for environmental management.' EPA Victoria, Southbank, Victoria 3006, Australia .
- EPA Victoria (2005) 'Guidelines for Environmental Management: Dual pipe water recycling schemes Health and environmental risk management.' EPA Victoria, Melbourne, Australia.
- EPA Victoria. (1991) 'Guidelines for wastewater irrigation. Publication no 168.' 168, EPA Victoria, Melbourne.

See www.epa.vic.gov.au/publications for any new guidelines.

These guidelines refer to recycled water as Class A, B, C or D; depending on the level of treatment. Class A has the highest level of treatment (EPA Victoria 2003). In Victoria, sewage treatment plants processing greater than 5 kL per day of sewage are subject to works approvals and licensing by EPA Victoria (EPA Victoria 2003; Stevens 2006). Under the *Environment Protection (Scheduled Premises and Exemptions) Regulations 1996*, an exemption from these statutory processes is provided for effluent reuse schemes that meet the requirements specified in the Victorian guideline (EPA Victoria 2003). The Australian Guidelines for Water Recycling (AGWR) should also be considered (see below).

The AGWR provide a framework for the management of recycled water, sets performance objectives, establishes the obligations of suppliers and users of recycled water, and suggests best practice measures for treatment, quality, site selection, application, site management, and monitoring and reporting in order to meet the performance.

Environment Improvement Plans (EIP) form a critical component of the exemption process. EIPs need to demonstrate that the performance objectives of the guideline can be complied with by detailing the procedures and practices that will be implemented to manage risk and ensure sustainability.

Suppliers and users of recycled water must ensure that:

- 1. All reuse schemes have an appropriate EIP.
- 2. For Class A recycled water schemes, approval from EPA Victoria and the Department of Human Services (DHS) is required
- 3. For all non Class A schemes involving greater than 1 ML per day of recycled water or industrial process waters, approval from EPA or an appointed auditor is required.
- 4. Endorsement from the Department of Primary Industries is also required for water with significant quantities of animal effluent (EPA Victoria 2003).
- 5. Reuse schemes that use more than 1 ML per day should be annually audited to verify compliance with these Guidelines.
- 6. Reuse schemes that use less than 1 ML per day must be audited at least every three years (EPA Victoria, 2003).

All monitoring, reporting and auditing procedures and programs should be documented in the EIP. Audit programs for schemes that use greater than 1 ML per day should comply with the principles in *ISO 14010's Guidelines for Environmental Auditing*. The proponent of the reuse scheme should ensure that an appropriately qualified independent auditor or internal expert undertakes the audit (EPA Victoria 2003).

Australian Guidelines for Water Recycling

The new Australian Guidelines for Water Recycling (AGWR) have recently set the standard for managing risks posed to human health and the environment in Australia (NRMMC and EPHC 2006). They do not supersede Victorian State Guidelines (EPA Victoria 2003), however, it would be considered best practice to use the framework and information in the AGWR within the context of the Victoria Guidelines.

There are two components of the AGWR that should be considered:

1. The Australian Guidelines for Water Recycling

Full reference: NRMMC, EPHC (2006) 'Australian Guidelines for Water Recycling. Managing Health and Environmental Risks. Phase 1. National Water Quality Management Strategy 21.' Natural Resource Management Ministerial Council. Environment Protection and Heritage Council Australian Health Ministers' Conference, Canberra, Australia.

See www.ephc.gov.au/ephc/water_recycling.html

2. National Chemical Reference Guide - Standards in the Australian Environment

This website provides information analysed to derive safe concentration values that should be achieved in order to protect ecosystems and human health in Australia.

See www.deh.gov.au/chemicals-guide

Key parameters of AGWR

The framework for management of recycled water quality and use given in Australian Guidelines for Water Recycling (NRMMC and EPHC 2006) is based on, and follows the same principles as the framework used in the 2004 *Australian Drinking Water Guidelines* (NHMRC and NRMMC 2004).

The framework describes a generic process for developing and implementing preventive risk management systems for recycled water use. Such systems can be applied to all combinations of water source and end use, including applications not specifically addressed in this document, such as stormwater recycling and use of recycled water to augment drinking water sources. The aim is to provide a measurable and ongoing assurance that performance requirements are met and that, as far as possible, faults are detected before recycled water is supplied, discharged or applied, so that corrective actions can be implemented proactively.

Recycled water - "Fit-for-purpose"

One of the major differences between Victorian State guidelines and the Australian Guideline for Water Recycling is the concept of identifying and producing recycled water of a quality that is **'fit-for-purpose'** from a pathogen and chemical hazard perspective. To be consistent with this approach, these guidelines do not include a classification system for recycled water like in the Victorian State Guidelines (refer to Section 1). A principal reason for this decision is that classification systems can limit flexibility and implies some water qualities are better than others.

The framework in the Australian guidelines also relates specifically to the quality of the recycled water, ensuring any hazards to human health or the environment (including the horticultural system) do not pose a significant risk (i.e. the level of risk is low and acceptable). That is, the recycled water is fit for the intended use from an environmental and human health perspective. The commonly used Class A, B C, D system in Australia often did not relate specifically to recycled water and impacts on the environment, but was historically used from a pathogens and human health perspective. The fit-for-purpose classification overcomes the misunderstandings of the Class terminology and ensures that the environment, agronomic and human health perspectives are considered when developing and using recycled water.

7.2 Plumbing requirements

Recommendations from the Victorian 'Recycled Water Plumbing Guide 2005' (PIC 2005) are summarised below. We recommend you also download the guide.

See www.pic.vic.gov.au

General

- All plumbing work must be carried out by a licensed plumber.
- A "Compliance Certificate" must be submitted to the consumer upon completion of all work.
 On the Compliance Certificate Item 5 "cold water" and Item 91 "recycled water" must be circled.

Recycled water mains

- All underground recycled water mains piping must be purple in colour or be wrapped in purple coloured plastic sleeve.
- All recycled water stand-pipes and fire hydrants must be purple in colour and be marked "recycled water".

Meter assemblies

- Recycled water meter assemblies must be purple in colour (Figure 16), fitted above ground in an accessible position as close as possible to the relevant property boundary and adjacent to the drinking water meter.
- A dual check valve is required on the outlet of every drinking water meter assembly and must be visible, accessible and fitted in the horizontal section of the meter assembly.

Figure 16 Recycled water meter assembly with purple to identify it contains recycled water.

Inside the property

- All external tap outlets on the drinking water service shall be fitted with hose connection vacuum breakers.
- All hose taps must have removable handles to prevent unauthorized use.
- "DO NOT DRINK" signs must be displayed above all external recycled water outlets.
- All pipe work inside a property must be approved for use with recycled water as per page 9 of the 'Recycled Water Plumbing Guide 2005'.
- All buried pipe must have identification tape installed on top of the recycled water pipe running longitudinally and fastened to the pipe at 3 metre intervals.
- The warning tape must be at least 75 mm wide and state "Warning: Recycled Water Do not drink" continually along its length and coloured in accordance with clause 9.5.4 AS/NZS 3500.1:2003 (AS/NZS 2003) (Figure 17).
- All other installation requirements of AS/NZS 3500.1:2003 (AS/NZS 2003) Section 3 and 5 installation of cold water services also apply.

Figure 17 Example of warning tape laid above buried pipe that reticulate recycled water. Tape meets Aust standard being a minimum of 75mm wide and stating "Recycled water" and "Do not drink".

7.3 Classes of recycled water

 Table 24
 Victorian classifications of recycled water and permitted uses.

Class	Overview of recycling process	Permitted Uses (Fit-for-purpose)
A	This is the highest quality of recycled water and is achieved after a tertiary treatment process combined with pathogen removal. Class A recycled water is classified as safe for use on irrigation for food plants - including those eaten raw. Indicative objectives: < 10 E.coli org/100 mL, Turbidity < 2 NTU, < 10 / 5 mg/L BOD / SS, pH 6 – 9.5 and 1 mg/L Cl ₂ residual (or equivalent disinfection). In addition to this the guidelines for dual pipe recycled water scheme indicate that 7-log removal of viruses and 6-log removal of protozoa with helminth control if required (EPA Vic 2005, Table 5.1)	 residential garden watering closed system toilet flushing process/cooling water for industry fire protection stores and reticulation systems irrigation of municipal parks and sports grounds water for contained wetlands or ornamental ponds food plants that are consumed raw all of the uses listed for classes B, C and D
В	A secondary treatment process, combined with some pathogen reduction is used to produce Class B recycled water. Indicative objectives: <100 E.coli org/100 mL, pH 6 – 9.5, < 20 / 30 mg/L BOD / SS and Helminth control required for cattle grazing	 irrigation of dairy cattle grazing fodder livestock drinking water (not including pigs) wash down water for dairy sheds and stockyards (not including milking equipment) urban (non-potable) uses with restricted public access closed industrial systems all of the uses listed for classes C and D
С	A secondary treatment process combined with minor pathogen reduction is used to produce Class C recycled water. Indicative objectives: <1000 E.coli org/100 mL, pH 6 – 9.5, < 20 / 30 mg/L BOD / SS and Helminth control required for cattle grazing	 cooked/processed human food plants selected (raw/unprocessed) plants not directly exposed to recycled water (e.g. apples) grazing/ fodder for cattle, sheep, horses, goats etc. grazing for dairy cattle (subject to a five day withholding period after irrigation) urban (non-potable) uses with restricted public access closed industrial systems all of the uses listed for Class D
D	A secondary treatment process is used to produce water of this quality. Indicative objectives: <10000 E.coli org/100 mL, pH 6 – 9.5 and < 20 / 30 mg/L BOD / SS	 non food plants such as woodlots, turf growing and flowers

Source: EPA Victoria 2003, p 20

7.4 Components found in recycled water

Table 25	Typical concentrations of components found in recycled water.
	Typical concentrations of components found in recycled water.

Parameter	Symbol	Median	Units
Total nitrogen	N _{tot}	15.2	mg/L
Ammonium	NH_4	8.4	mg/L
Total phosphorus	P _{tot}	5.9	mg/L
рН		7.9	рН
Total dissolved salts	TDS	675	mg/L
Electrical conductivity	EC	1.3	dS/m
Sodium adsorption ratio	SAR	6	(mmolc/L) ^{0.5}
Sodium	Na	181	mg/L
Calcium	Ca	35	mg/L
Magnesium	Mg	19	mg/L
Chloride	Cl	135	mg/L
Aluminium	Al	227	μg/L
Arsenic	As	1.9	μg/L
Boron	В	289	μg/L
Cadmium	Cd	0.3	μg/L
Chromium	Cr	9.4	μg/L
Cobalt	Со	0.7	μg/L
Copper	Cu	23.5	μg/L
Iron	Fe	722	μg/L
Lead	Pb	5.4	μg/L
Manganese	Mn	35.2	μg/L
Mercury	Hg	0.1	μg/L
Molybdenum	Мо	9.8	μg/L
Nickel	Ni	7.0	μg/L
Silver	Ag	2.6	μg/L
Zinc	Zn	48	μg/L

Source: modified from NRMMC and EPHC 2006. For water recycled from sewage effluent in Australia. Therefore recycled water would be on average similar, but affected by the type of reclamation treatment and any evaporation in storage or reticulation.

7.5 How salinity impacts on plant available water

In the absence of salinity, as a soil becomes drier, water becomes harder to extract from around the soil particles as it clings more and more tightly to them (this is called the matric potential effect). In saline soils there is the added complexity that as salt concentration increases as the soil dries then the plant's ability to "suck" water from the soil is further reduced (this is known as the osmotic effect or potential; Anderson *et al.* 2007).

Fresh water is attracted to saline water or towards salts in the soil or plant roots. Water is taken up by plants in this way, as it is attracted to concentrated solutions of salts and sugars inside plant roots – hence there is a pressure gradient from the soil into the plant root.

This pressure is called osmotic pressure. High concentrations of salts in soil water lower this pressure gradient between the soil and plant root, slowing the movement of water into roots (Figure 18). Eventually, if the concentration of salts in the soil water becomes high enough, water ceases to flow into the root regardless of the amount of soil water. In some cases even though the soil may appear to be "wet" in saline soil the plant cannot access this water.

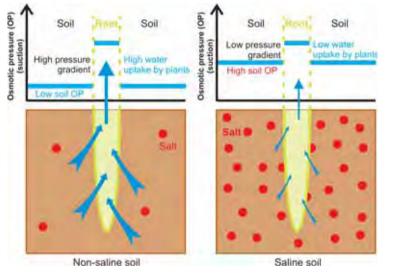


Figure 18 Relative water uptake by plants in saline and non-saline soils. OP = osmotic pressure. Source: Anderson *et al.* 2007. In saline soil, irrigation will need to be scheduled more often to ensure sufficient plant available water

7.6 Sensitivity of plants to sodium, chloride and salinity

Salt tolerance of trees, shrubs, and ground covers

Table 26 Tolerance of selected landscape tree species to salt spray and to soil salinity.

Common name	Botanical name	Tolerance to salt spray ⁽¹⁾	Tolerance to soil salinity ⁽²⁾		
Trees					
Aleppo Pine	Pinus halepensis Mill.	moderate	moderate		
Almond	Prunus duclis D.A.Webb.	sensitive	sensitive		
Almond-leaved Pear	Pyrus spinosa Forssk.	moderate	moderate		
American Persimmon	Diospyros virginiana L.	sensitive	sensitive		
Apricot	Prunus armeniaca L.	sensitive	sensitive		
Avacado	Persea americana Mill.	moderate	moderate		
Banana	Musa acuminata Colla.	sensitive	sensitive		
Black Sapote	Diospyros digyna L.	moderate	moderate		
Blackthorn	Prunus spinosa L.	tolerant	moderate		
Cape Plumbago	Plumbago auriculata Lam.	tolerant	moderate		
Carambola, Starfruit	Averrhoa carambola L.	moderate	moderate		
Carolina Laurel Cherry	Prunus caroliniana Ait.	moderate	sensitive		
Chinese Elm	Ulmus parvifolia Jacq.	moderate	moderate		
Chinese Hackberry	Celtis sinensis Pers.	sensitive	sensitive		
Chinese Pistache	Pistachia chinensis Bunge.	sensitive	sensitive		
Chinese Tallow Tree	Sapium sebiferum Roxb.	highly tolerant	tolerant		
Coast Live Oak	Quercus agrifolia Nee	tolerant	tolerant		
Coast Redwood	Cupressus sempervirens L.	moderate	moderate		
Var. Aptos Blue	Sequoia sempervirens Endl.	sensitive	sensitive		
Coast Redwood	Diospyros virginiana L.	sensitive	sensitive		
Var. Los Altos	Sequoia sempervirens Endl.	moderate	moderate		
Cork Oak	Quercus suber L.	moderate	moderate		
Cornelian Cherry	Cornus mas L.	sensitive	sensitive		
Crab Apple	Malus sylvestris Mill.	sensitive	sensitive		
Crape Myrtle	Lagerstoemia indica L.	sensitive	sensitive		
Deodar Cedar	Cedrus deodara D. Don	moderate	moderate		
Drake Elm	Ulmus parvifolia Drake	moderate	moderate		
Edible Fig	Ficus carica L.	tolerant	tolerant		
Florida Slash Pine	Pinus elliotti Engelm.	moderate	moderate		
Forsythia	Forsythia intermedia Zabel	tolerant	tolerant		
Frangipani	Plumaria spp. L.	tolerant	tolerant		
Ginkgo	Ginkgo biloba L.	sensitive	sensitive		
Golden Marguerite	Euryops pectinatus	sensitive	sensitive		
Goldenrain Tree	Koelreuteria paniculata Laxm.	moderate	moderate		
Grapefruit	Citrus paradisi Macf.	sensitive	sensitive		

Common name	Botanical name	Tolerance to salt spray ⁽¹⁾	Tolerance to soil salinity ⁽²⁾
Guava	Psidium guajava L.	sensitive	sensitive
Guayule	Parthenium argentatum Gray.	highly tolerant	highly tolerant
Italian Cypress	Cupressus sempervirens L.	moderate	moderate
Jacaranda	Jacaranda mimosifolia D. Don.	sensitive	sensitive
Japanese Black Pine	Pinus thunbergii Parl.	moderate	moderate
Japanese Privet	Ligustrum japonicum Thunb.	moderate	moderate
Laurel Oak	Quercus laurifolia Michux	sensitive	sensitive
Lemon	Citrus limon L.	sensitive	sensitive
Lemon Bottlebrush	Callistemon citrinus Curtis.	tolerant	moderate
Live Oak	Quercus virginiana Mill.	highly tolerant	tolerant
Loquat	Eriobotrya japonica Lindl.	moderate	moderate
Lychee	Litchi chinensis Sonn.	sensitive	sensitive
Mango	Mangifera indica L.	sensitive	sensitive
Mexican Stone Pine	Pinus cembroides Zucc.	highly tolerant	tolerant
Norfolk Island Pine	Araucaria heterophylla (Salisb.)	highly tolerant	tolerant
Olive	Olea europaea L.	sensitive	sensitive
Orange	Citrus sinensis Osbeck.	sensitive	sensitive
Orchid Tree	Bauhinia purpurea L.	sensitive	moderate
Oriental Arbor-Vitae	Platycladus orientalis Franco	moderate	moderate
Peach	Prunus persica Batsch	sensitive	sensitive
Pear	Pyrus communis L.	sensitive	sensitive
Pecan	Carya illinoinensis Koch.	moderate	moderate
Pomegranate	Punica granatum L.	moderate	moderate
Raywood Ash	Fraxinus oxycarpa Bieb. Ex Willd.	moderate	moderate
Red Maple	Acer rubrum L.	sensitive	sensitive
Rockspray or Little-leaf Cotoneaster	Cotoneaster microphyllus Lindl.	tolerant	moderate
Rose Apple	Syzgium jambos Alston	sensitive	sensitive
Sand Pine	Pinus clausa Vasey	highly tolerant	tolerant
Sapodilla	Manilkara zapota	tolerant	tolerant
Schefflera, Umbrella Tree	Schefflera actinophylla Harms	moderate	moderate
Sea Grape	Coccoloba uvifera L.	highly tolerant	tolerant
Silk Oak	Grevillea robusta Cunn.	highly tolerant	tolerant
Silk Tree	Albizia julibrissin Durazz.	sensitive	sensitive
Skyroket Juniper	Juniperus virginiana L.	highly tolerant	tolerant
Southern Magnolia	Mangnolia grandiflora L.	sensitive	sensitive
Southern Red Cedar	Juniperus silicicola Bail.	highly tolerant	tolerant
Sweet Gum	Liquidambar styraciflua L.	sensitive	sensitive
Sycamore Maple	Acer pseudoplatanus L.	sensitive	sensitive
Tangerine	Citrus reticulata Blanco.	sensitive	sensitive

Common name	Botanical name	Tolerance to salt spray ⁽¹⁾	Tolerance to soil salinity ⁽²⁾
	Palm		
Areca Palm	Chrysalidocarpus lutescens Wendl.	moderate	moderate
Cabbage Palmetto	Sabal palmetto Lodd.	tolerant	tolerant
Canary Island Date	Phoenix canariensis Chabaud.	moderate	moderate
Date Palmetto	Phoenix dactylifera L.	tolerant	tolerant
European Fan Palm	Chamaerops humilis L.	tolerant	tolerant
Fishtail Palm	Caryota mitis Lour.	moderate	moderate
Lady Palm	Rhapis excelsa Henry	moderate	moderate
Paurotis Palm	Acoelorrhaphe wrightii Becc.	moderate	moderate
Pindo Palm	Butia capitata Becc.	tolerant	tolerant
Ponytail Palm (not a true palm)	Nolina recurvata Hemsle	moderate	moderate
Pygmy Date Palm	Phoenix roebelinii O'Brien.	moderate	moderate
Queen Palm	Syagrus romanzoffiana L.	moderate	moderate
Saw Palm	Serenoa repens Small	tolerant	tolerant
Senegal Date Palm	Phoenix reclinata Jacq.	moderate	moderate
Washingtonia Palm	Washingtonia robusta Wendl.	tolerant	tolerant

Source: Tanji et al. 2007 -

Data in the table adapted from Wu L. and Dodge L. 2005 Special Report for the Elvenia J. Slosson Endowment Fund (in press).

(1): Tolerances to salt spray are defined by the degree of salt stress symptoms developed in the leaves of the plants and the salt concentrations in the irrigation water as follows:

Highly tolerant: No apparent salt stress symptoms may be observed when the plants are irrigated with water containing 600 mg/L sodium and 900 mg/L chloride and having an ECi of 2.1 dS/m.

Tolerant: No apparent salt stress symptoms may be observed when the plants are irrigated with water containing 200 mg/L sodium and 400 mg/L chloride.

Moderate: Less than 10% symptoms may be observed when the plants are irrigated with water containing 200 mg/L sodium and 400 mg/L chloride and having an ECi of 0.9 dS/m.

Sensitive: More than 20% of the leaves may develop symptoms when the plants are irrigated with water containing 200 mg/L sodium and 400 mg/L chloride and having an ECi of 0.6 dS/m.

(2): The definitions of soil salinity tolerance are:

Highly tolerant: Permissible soil ECe greater than 6 dS/m,

Tolerant:	Permissible soil ECe greater then 4 and less than 6 dS/m,
Moderate:	Permissible soil ECe greater than 2 and less than 4 dS/m,
Sensitive:	Permissible soil ECe less than 2 dS/m.

Table 27 Tolerance of landscape shrub species to salt spray and to soil salinity.

Common name	Botanical name	Tolerance to salt spray ⁽¹⁾	Tolerance to soil salinity ⁽²⁾
Abelia 'Edward Goucher'	Abelia grandiflora Rehd.	sensitive	sensitive
African Bush Daisy	Gamolepis chrysanthemoides DC.	highly tolerant	tolerant
Bamboo	Bambusa sp. Schreb.	moderate	moderate
Bird of Paradise	Strelitzia reginae Bankses Dryander	moderate	moderate
Blue Blossom	Ceanothus thyrsiflorus Esch.	tolerant	moderate
Bottle Brush	Callistemon rigidus R. Br.	moderate	moderate
Butterfly Bush	Buddleja davidii Franch.	sensitive	sensitive
California Holly Grape	Mahonia pinnata Fedde	sensitive	sensitive
Camellia	Camellia japonica L.	sensitive	sensitive
Canna Lily	Cannax generalis Bailey.	moderate	moderate
Cape Jasmine, Gardenia	Gardenia augusta Merrill	moderate	moderate

Common name	Botanical name	Tolerance to salt spray ⁽¹⁾	Tolerance to soil salinity ⁽²⁾
Cape Plumbago	Plumbago auriculata am.	tolerant	tolerant
Century Plant	Agave americana L.	highly tolerant	tolerant
Chinese Holly	llex cornuta Burford	moderate	moderate
Coast Red Elderberry	Sambucus callicarpa Greene	tolerant	moderate
Copper Leaf	Acalypha wilkesiana Muell.	sensitive	sensitive
Coral Plant	Jatropha multifida L.	sensitive	moderate
Cornelian Cherry	Cornus mas L.	sensitive	sensitive
Croton	Codiaeum variegatum Blume.	sensitive	sensitive
Crown of thorns	Euphorbia milii Ch. Des Moulins	highly tolerant	highly tolerant
Dracaena	Dracaena deremensis Engler.	moderate	moderate
Dwarf Shefflera	Schefflera arboricola L.	moderate	moderate
Dwarf Yaupon Holly	llex vomitoria Nana	highly tolerant	tolerant
Escallonia	Escallonia rubra Pers.	tolerant	moderate
Firecracker Plant	Russelia equisetiformis Schlecht & Cham.	moderate	moderate
Golden Shrub Daisy	Euryops pectinatus L.	tolerant	moderate
Guayule	Parthenium argentatum Gray.	highly tolerant	highly tolerant
Heavenly Bamboo	Nandina domestica Thunb.	sensitive	sensitive
Heliconia	Heliconia sp.	moderate	moderate
Hybrid Forsythia	Forsythia intermedia Zabel	moderate	moderate
Hydrangea	Hydrangea macrophylla Ser.	tolerant	moderate
Indian Hawthorn	Raphiolepis indica Lindl.	highly tolerant	tolerant
Ixora	Ixora coccinea L.	sensitive	sensitive
Japanese Boxwood	Buxus microphylla Mull. Arg.	tolerant	moderate
Japanese Photinia	Photinia glabra Maxim.	sensitive	sensitive
Jasmine	Jasminum polyanthum Franch.	moderate	moderate
Lantana	Lantana camara L.	highly tolerant	tolerant
Mock Orange	Pittosporum tobra Aiton	highly tolerant	tolerant
Natal Plum	Carissa macrocarpa A. DC.	highly tolerant	tolerant
Oleander	Nerium oleander L.	highly tolerant	tolerant
Opuntia Cactus	Opuntia sp. Miller	moderate	tolerant
Orange Cestrum	Cestrum aurantiacum Lindl.	moderate	moderate
Orange Jessamine	Murraya paniculata L.	sensitive	sensitive
Oregon Grape	Mahonia aquifolium Nutt.	sensitive	sensitive
Рарауа	Carica papaya L.	moderate	moderate
Pentas, Egyptian star- cluster	Pentas lanceolata Deflers	sensitive	sensitive
Photinia	Photinia fraseri Dtress	sensitive	sensitive
Poinsetta	Euphorbia pulcherrima Willd.	sensitive	sensitive
Powder Puff Tree	Calliandra haematocephala Hassk.	sensitive	sensitive
Prostrate Acacia	Acacia redolens Maslin.	tolerant	tolerant
Pyrenees Cotoneaster	Cotoneaster congestus Baker	sensitive	sensitive
Red Firethorn	Pyracantha coccinea Roem.	moderate	moderate
Rockspray Cotoneaster	Cotoneaster microphylla Lindl.	moderate	sensitive

Common name	Botanical name	Tolerance to salt spray ⁽¹⁾	Tolerance to soil salinity ⁽²⁾
Rose	Rosa sp. L.	sensitive	sensitive
Rose of China, Garden Hibiscus	Hibiscus rosa L.	moderate	moderate
Sandankwa Viburnum	Viburnum suspensum Lindl.	moderate	moderate
Shrimp Plant	Justicia brandegeana Wassh.	sensitive	sensitive
Silverthorn, Silverberry	Elaeugnus pungens Thunb.	highly tolerant	tolerant
Spanish Bayonet	Yucca aloifolia L.	highly tolerant	highly tolerant
Surinam Cherry	Eugenia unifora L.	sensitive	sensitive
Sweet Viburnum	Viburnum odoratissimum Ker.	moderate	moderate
True Myrtle	Myrtus communis L.	tolerant	tolerant
Vine Hill Manzanita	Arctostaphylos densiflora M.S.Bac	tolerant	tolerant
Wax Myrtle	Myrica cerifera L.	highly tolerant	tolerant
Yaupon Holly	llex vomitoria Ait.	tolerant	tolerant
Yew Pine	Podocarpus macrophyllus D. Don	sensitive	sensitive

Data in the table adapted from Wu L. and Dodge L. 2005 Special Report for the Elvenia J. Slosson Endowment Fund (in press).

(1): Tolerances to salt spray are defined by the degree of salt stress symptoms developed in the leaves of the plants and the salt concentrations in the irrigation water as follows:

Highly tolerant: No apparent salt stress symptoms may be observed when the plants are irrigated with water containing 600 mg/L sodium and 900 mg/L chloride and having an ECi of 2.1 dS/m .

 Tolerant:
 No apparent salt stress symptoms may be observed when the plants are irrigated with water containing 200 mg/L sodium and 400 mg/L chloride.

 Moderate:
 Less than 10% symptoms may be observed when the plants are irrigated with water containing 200 mg/L sodium and 400 mg/L chloride and having an ECi of 0.9 dS/m.

 Sensitive:
 More than 20% of the leaves may develop symptoms when the plants are irrigated with water containing 200 mg/L sodium and 400 mg/L chloride and having an ECi of 0.6 dS/m.

 The LFR with the plants are irrigated with water containing 200 mg/L sodium and 400 mg/L chloride and having an ECi of 0.6 dS/m.

(2): The definitions of soil salinity tolerance are:

Highly tolerant: Permissible soil ECe greater than 6 dS/m,

Tolerant:	Permissible soil ECe	greater then 4 ar	nd less	than 6 (dS/m,

Moderate: Permissible soil ECe greater than 2 and less than 4 dS/m,

Sensitive: Permissible soil ECe less than 2 dS/m.

Table 28 Tolerance of various landscape ground covers and vine species to salt spray and to soil salinity.

Common name	Botanical name	Tolerance to salt spray ⁽¹⁾	Tolerance to soil salinity ⁽²⁾
	Ground cover		
African Iris	Dietes spp. Salisb. ex Klatt.	moderate	moderate
Aloe	Aloe vera Burm. f.	highly tolerant	tolerant
Bromeliads	Bromeliaceae sp. L.	moderate	moderate
Caladium	Caladium sp. Vent.	sensitive	sensitive
Carpet Bugle	Ajuga repens	sensitive	sensitive
Chinese Juniper	Juniperus chinensis L.	moderate	moderate
Coontie	Zamia integrifolia L. f.	highly tolerant	tolerant
Creeping Fig	Ficus pumila L.	highly tolerant	tolerant
Creeping Juniper	Juniperus horizontalis Moench.	highly tolerant	tolerant
Daylily	Hemerocallis sp. L.	moderate	moderate
False Heather	Cuphea hyssopifolia Kunth.	moderate	tolerant

Common name	Botanical name	Tolerance to salt spray ⁽¹⁾	Tolerance to soil salinity ⁽²⁾
Hottentot Fig	Carpobrotus edulis L. Bolus.	highly tolerant	tolerant
Iceplant	Malephora crocea Schwantes.	highly tolerant	highly tolerant
Iris	Iris hexagona Walter	moderate	moderate
Japanese Garden Juniper	Juniperus procumbens Siebild ex Endl.	moderate	moderate
Joyweed	Alternanthera ficoidea R. Br.	moderate	moderate
Kalanchoe	Kalanchoe sp. Adans.	moderate	moderate
Lady Fern	Athyrium filix-femina Rith.	sensitive	sensitive
Lilyturf (Liriope)	Liriope muscari L. H. Bail.	moderate	moderate
Lynne's Vine Hill Manzanita	Arctostaphylos densiflora 'Lynne' M.S.Back.	moderate	moderate
Maidenhair Fern	Adiantum sp. L.	moderate	moderate
Mealycup Sage	Salvia farinacea Benth.	sensitive	sensitive
Natal Plum	Carissa macrocarpa A. DC.	highly tolerant	tolerant
Peperomia	Peperomia obtusifolia Dietr.	sensitive	sensitive
Periwinkle	Catharanthus roseus G. Donf.	tolerant	moderate
Purple Iceplant	Lampranthus productus N. E. Br.	highly tolerant	highly tolerant
Purple Queen	Tradescantia pallida Hunt.	highly tolerant	tolerant
Purslane (Rose Moss)	Portulaca grandiflora Hook.	moderate	sensitive
Red Apple Iceplant	Aptenia cordifolia N. E. Br.	tolerant	tolerant
Rosea Iceplant	Drosanthemum hispidum Schwantes.	highly tolerant	highly tolerant
Rosemary	Rosmarinus officinalis L.	moderate	moderate
Shore Juniper	Juniperus conferta Parl.	tolerant	tolerant
Society Garlic	Tulbaghia violacea Harvey	moderate	moderate
Spider Plant	Chlorophytum comosum Jacq.	moderate	moderate
Sword Fern	Nephrolepis exaltata Schott.	highly tolerant	tolerant
Tiger Flower	Tigridia pavonia Ker Gawler	tolerant	moderate
Umbrella Sedge	Cyperus alternifolius L.	moderate	moderate
Verbena	Verbena sp. L.	sensitive	sensitive
White Iceplant	Delosperma 'Alba' N. E.	highly tolerant	highly tolerant
	Vine		
Algerian Ivy	Hedera canariensis Willd.	highly tolerant	tolerant
Allamanda	Allamanda cathartica L.	tolerant	tolerant
Bleeding Heart Vine	Clerodendrum thomsoniae Balf. f.	sensitive	sensitive
Bougainvillea	Bougainvillea glabra Choisy	highly tolerant	tolerant
Cape Honeysuckle	Tecomaria capensis Spach.	tolerant	tolerant
Coral Vine	Antigonon leptopus Hookery	sensitive	moderate
Creeping Fig	Ficus pumila L.	highly tolerant	tolerant
English Ivy	Hedera helix L.	moderate	moderate
Mealycup Sedge	Salvia farinacea Benth.	sensitive	sensitive
Night Blooming Cereus	Hylocereus undatus Britton & Rose	moderate	moderate
Passion Flower	Passiflora incanata L.	sensitive	sensitive

Common name	Botanical name	Tolerance to salt spray ⁽¹⁾	Tolerance to soil salinity ⁽²⁾
Philodendron	Philodendron williamsii Hook.	moderate	moderate
Pothos	Epipremnum sp. Schott.	moderate	moderate
Purple Allamanda	Allamanda blanchetii A. DC.	moderate	moderate
Railroad Vine	Ipomoea pescaprae R. Br.	highly tolerant	tolerant
Seafoam Morning Glory	Ipomoea stolonifera Gmel.	highly tolerant	tolerant
Star Jasmine	Trachelospermum jasminoides Lem.	tolerant	tolerant
Trumpet Creeper	Campsis radicans Seem.	sensitive	sensitive
Umbrella Sedge	Cyperus altenifolius L.	moderate	moderate
Violet Trumpet Vine	Clytostoma callistegioides Miers ex Bur.	sensitive	sensitive

Data in the table adapted from Wu L. and Dodge L. 2005 Special Report for the Elvenia J. Slosson Endowment Fund (in press).

(1): Tolerances to salt spray are defined by the degree of salt stress symptoms developed in the leaves of the plants and the salt concentrations in the irrigation water as follows:

Highly tolerant: No apparent salt stress symptoms may be observed when the plants are irrigated with water containing 600 mg/L sodium and 900 mg/L chloride and having an ECi of 2.1 dS/m .

Tolerant: No apparent salt stress symptoms may be observed when the plants are irrigated with water containing 200 mg/L sodium and 400 mg/L chloride.

Moderate: Less than 10% symptoms may be observed when the plants are irrigated with water containing 200 mg/L sodium and 400 mg/L chloride and having an ECi of 0.9 dS/m.

Sensitive: More than 20% of the leaves may develop symptoms when the plants are irrigated with water containing 200 mg/L sodium and 400 mg/L chloride and having an ECi of 0.6 dS/m.

(2):The definitions of soil salinity tolerance are:

Highly tolerant: Permissible soil ECe greater than 6 dS/m,

Tolerant: Permissible soil ECe greater then 4 and less than 6 dS/m,

Moderate: Permissible soil ECe greater than 2 and less than 4 dS/m,

Sensitive: Permissible soil ECe less than 2 dS/m.

Salt tolerance of flowers

Table 29 Salt tolerance of selected landscape flower crops.

Common name	Botanical name	Salt tolerance*	Reference(s)
Ageratum	Ageratum houstonianum	moderately sensitive	Devitt and Morris, 1987
Amaryllis	Hippeastrum hybridum	very sensitive	Shillo <i>et al.</i> , 2002; Sonneveld and Voogt, 1983
Anthurium	Anthurium andreanum	very sensitive	Sonneveld and Voogt, 1983
Apple Cactus	Cereus peruviana	moderately sensitive	Costello et al., 2003
Arabian Star Flower	Ornithogalum arabicum	very sensitive	Shillo et al., 2002
Asiatic Hybrid Lily	Lilium spp.	sensitive	Sonneveld, 1988
Azalea	Rhododendron hybrids	moderately sensitive	Cabrera, 2003
Azalea	Rhododendron obtusum	sensitive	Pearson, 1949; Lunt <i>et al.</i> , 1957
Baby's Breath	Gyposphila paniculata	moderately tolerant***	Shillo <i>et al.</i> , 2002
Begonia	Begonia bunchii	sensitive	Pearson, 1949
Begonia	Begonia ricinifolia	sensitive	Pearson, 1949
Bird of Paradise	Strelitzia reginae	very sensitive	Farnham et al., 1985

Common name	Botanical name	Salt tolerance*	Reference(s)
Blue Throatwort	Trachelium caeruleum	sensitive	Shillo <i>et al</i> ., 2002
Bouvardia	Bouvardia longiflora	moderately sensitive	Sonneveld et al., 1999
California Poppy	Eschscholzia californica	moderately tolerant***	Glattstein, 1989
Camellia	Camellia japonica	sensitive	Pearson, 1949
Carnation	Dianthus caryophyllus	moderately tolerant	Baas et al., 1995
Carnation	Dianthus chinensis	moderately tolerant	Devitt and Morris, 1987
Chief Celosia	Celosia argenta cristata	tolerant	Carter et al., 2005
China Aster	Callistephus chinensis	moderately sensitive	Kohl et al., 1957
China Aster	Callistephus chinensis	moderately tolerant	Sonneveld et al., 1999
Clematis	Clematis orientalis	very tolerant	Krupenikov, 1946
Coleus	Coleus blumei	tolerant	Zurayk et al., 1993
Coreopsis	Coreopsis grandiflora	moderately sensitive***	Glattstein, 1989
Cosmos	Cosmos bipinnatus	very sensitive	Devitt and Morris, 1987
Crested Coxcomb	Celosia argenta cristata	moderately sensitive	Devitt and Morris, 1987
Croton	Codiaeum punctatus	moderately tolerant	Farnham et al., 1985
Cucumber Leaf	Helianthus debilis	very tolerant	Costello et al., 2003
Cushion Bush	Calocephalus brownii	moderately sensitive	Costello et al., 2003
Cyclamen	Cyclamen persicum	sensitive	Bik, 1980
Dusty Miller	Artemesia stelleran	moderately sensitive	Glattstein, 1989
Felicia	Felicia amelloides	sensitive	Farnham <i>et al.</i> , 1985; Skimina, 1980
Fuchsia	Fuchsia hybrida	very sensitive	Pearson, 1949
Gardenia	Gardenia augusta	sensitive	Lunt et al., 1957
Gazania	Gazania aurantiacum	moderately tolerant	Costello et al., 2003
Geranium	Pelargonium x hortorum	sensitive	Kofranek <i>et al.</i> , 1958
Geranium	Pelargonium domesticum	tolerant	Zurayk et al., 1993
Gerbera Daisy	Gerbera jamesonii	moderately sensitive	Sonneveld and Voogt, 1983; Baas <i>et al.</i> , 1995; Savvas <i>et al</i> ., 2002
Giant Turf Lily	Ophiopogon jaburan	moderately sensitive	Skimina, 1980
Gladiola	Gladiolus spp.	sensitive	Kofranek et al., 1957
Globe Amaranth	Gomphrena globosa	moderately sensitive	Kang and van Iersel, 2002
Golden Marguerite	Euryops pectinatus	sensitive	Wu et al., 1999
Hibiscus	Hibiscus rosa-sinensis	sensitive	Bernstein et al., 1972
Impatiens	Impatiens x hawkeri	sensitive	Todd and Reed, 1988
Inca lily, Peruvian lily	Alstroemeria hybrids	very sensitive	Sonneveld, 1988
lvy Geranium	Pelargonium peltatum	moderately tolerant	Costello et al., 2003
Jade Plant	Crassula ovata	moderately sensitive	Skimina, 1980

Common name	Botanical name	Salt tolerance*	Reference(s)
Japanese Limonium	Limonium spp.	very tolerant	Shillo et al., 2002
Kalanchoe	Kalanchoe spp.	moderately tolerant	Costello et al., 2003
Kochia	Kochia childsii	tolerant	Monk and Peterson, 1961
Larkspur	Consolida ambigua	sensitive	Arnold et al., 2003
Lily of the Nile	Agapanthus orientalis	sensitive	Skimina, 1980
Lisianthus	Eustoma grandiforum	moderately sensitive	Shillo <i>et al.</i> , 2002
Love-Lies-Bleeding	Amaranthus tricolor	tolerant**	Aronson, 1989
Marigold	Tagetes erecta	moderately tolerant	West et al., 1980
Marigold	Tagetes patula	moderately tolerant	Devitt and Morris, 1987
Mexican Evening Primrose	Oenthera speciosa	moderately tolerant	Costello et al., 2003
Moss Rose	Portulaca grandiflora	very tolerant	Devitt and Morris, 1987
Mum	Chrysanthemum morifolium	moderately tolerant	Kofranek e <i>t al.</i> , 1953; Pearson, 1949
Myrtle	Vinca minor	sensitive	Farnham et al., 1985
Nasturtium	Tropaeolum majus	moderately sensitive***	Glattstein, 1989
Orchid	Cymbidium spp.	very sensitive	de Kreij and van den Berg, 1990
Orchid	Phalaenopsis hybrid	very sensitive	Wang, 1998
Oriental Hybrid Lily	Lilium spp.	sensitive	Sonneveld and Voogt, 1983
Ornamental Cabbage	Brassica oleracea	sensitive**	Maas and Grattan, 1999
Ornamental Kale	Brassica oleracea	sensitive**	Shannon et al., 2000
Pansy	Viola x wittrockiana	sensitive	Arnold et al., 2003
Paperwhite Narcissus	Narcissus tazetta	sensitive	Arnold et al., 2003
Periwinkle	Vinca major	moderately tolerant	Costello et al., 2003
Petunia	Petunia hybrida	tolerant	Devitt and Morris, 1987
Pinks	Dianthus barbatus	moderately sensitive	Monk and Peterson, 1961
Poinsettia 'Barbara Ecke'	Euphorbia pulcherrima	very sensitive	Kofranek et al., 1956
Poinsettia 'Red Sails'	Euphorbia pulcherrima	sensitive	Cox, 1991
Pot Marigold	Calendula officinalis	moderately tolerant	Chaparzadeh et al., 2003
Protea	Protea obtusifolia	moderately tolerant	Rodrigues-Perez <i>et al</i> ., 2000
Pygmy Torch	Amaranthus hypochondriacus	tolerant	Aronson, 1989
Rex Begonia	Begonia Rex- cultorum	very sensitive	Pearson, 1949
Rose	Rosa x hybrida	sensitive	Cabrera and Perdomo, 2003; Fernández Falcón <i>et al.</i> , 1986
Saff Flower	Carathamus tinctorius	moderately tolerant**	Beke and Volkmer, 1994
Sea Lavender	Limonium latifolium	very tolerant	Aronson, 1989
Snapdragon	Antirrhinum majus	moderately sensitive	Carter et al., 2005

Common name	Botanical name	Salt tolerance*	Reference(s)
Spiderlily	Hymenocallis keyensis	moderately tolerant	Costello et al., 2003
St. Bernard's Lily	Chlorophytum comosum	tolerant	Zurayk et al., 1993
Starfish Flower	Stapelia gigantea	moderately tolerant	Costello et al., 2003
Statice	Limonium perezii	sensitive	Farnham et al., 1985
Statice	Limonium perezii	very tolerant	Grieve <i>et al.</i> , 2005; Carter <i>et al.</i> , 2005
Statice	Limonium sinuatum	very tolerant	Grieve et al., 2005; Carter <i>et al</i> ., 2005
Stock	Matthiola incana	very tolerant	Lunt et al., 1964; Wigdor <i>et al</i> ., 1958
Sunflower	Helianthus annuus	moderately tolerant	Ashraf and O'Leary, 1995
Sweet Alyssum	Lobularia maritima	moderately tolerant	Monk and Peterson, 1961
Sweet Pea	Lathyrus japonica	moderately tolerant	Costello et al., 2003
Treasure Flower	Gazania spp.	very tolerant	Perry, 1989
Vinca	Catharanthus roseus	sensitive	Arnold <i>et al.</i> , 2003; Huang and Cox, 1988
Zinnia	Zinnia elegans	moderately sensitive	Devitt and Morris, 1987

* Criteria for assigning salt tolerance: not more than 50% reduction in growth, no visually-observable foliar burn, and maximum permissible ECe (dS/m) as follows:

< 2 very sensitive

2–3 sensitive

3-4 moderately sensitive

4-5 moderately tolerant

5–6 tolerant

> 6 very tolerant

** Based on salt tolerance classification of related agronomic or horticultural species or variety

*** Only qualitative data are available

Table 30 Varietal differences in salt tolerance for selected cut-flower crops.

Common name	Variety	Threshold ECe (dS/m)	Slope (%)	Reference
Carnation	Adefie	1.1	2.1	Sonneveld et al., 1999
	Beauty	4.3	3.9	Sonneveld et al., 1999
	Princess White	5.0	—	Devitt and Morris, 1987
	Scania	1.2	6.9	Sonneveld and Voogt,1987
	Nora Barlo	1.2	5.5	Sonneveld and Voogt,1987
Chrysanthemum	Indianapolis White	2.4	—	Rutland, 1972
	Spider	> 0.8	6.8	Sonneveld and Voogt, 1987
	Horim	> 0.8	12.1	Sonneveld and Voogt, 1987
	Maghi*	> 8.0	_	Rahi and Datta, 2000
	Basantika*	> 8.0	_	Rahi and Datta, 2000
	Bronze Kramer	6.0	9.0	Kofranek et al., 1953
	Albatross	2.0	_	Lunt et al., 1962
Gerbera	Beauty	1.5	9.8	Sonneveld et al., 1999
	Mandarine	< 0.6	5.1**	Sonneveld and Voogt, 1983
	Fabiola	< 0.6	6.5**	Sonneveld and Voogt, 1983
Rose	Baccara	1.0	10	Yaron et al.,1969

Common name	Variety	Threshold ECe (dS/m)	Slope (%)	Reference
	Grenoble	2.1	20	Bernstein et al.,1972
	Forever yours	1.8	—	Hughes and Hanan, 1978
	Sonia	1.0	10	Zeroni and Gale,1989
	Europa	2.1	5.3	Sonneveld et al.,1999
	Madelon	4.8***	2.0	Baas and Berg,1999
	Kardinal	2.2	20	Wahome et al.,2000
	Bridal Pink	5.4****	—	Cabrera, 2001

*

Plants grown from cuttings subjected to mutagenesis by gamma irradiation resulted in more salt tolerant genotypes

** Based on weight of peduncle

*** Recirculating irrigation system

**** Electrical conductivity (EC) of leachate

Sensitivity of turf species to salinity

 Table 31
 Relative soil salinity tolerance thresholds of turf grasses to salinity in soil extract (ECe) and estimates for irrigation water (ECi).

			ECe		ECi			
Common name	Species	At 80% growth	At 50% growth	Source	25% LF (e.g. sand)ª	20% LF (e.g. sandy loam)ª	17% LF (e.g. loam)ª	12% LF (e.g. light clay)ª
Alkaligrass	Punccinella ssp	6–12, 8.5⁵	20–30	Z	8.5	7.3	6.3	4.8
Annual bluegrass	Poa annua	0–3, 1.5 ^b	-	Z	1.5	1.3	1.1	0.8
Annual ryegrass	Lolium multiflorum		4	W	1.7	1.5	1.2	1.0
Aussiblue	Digitaria didactyla	1–2.8	4–8.5	х	1.6	1.4	1.2	0.9
Bahiagrass	Paspalum notatum		3	W	1.3	1.1	0.9	0.7
Bermuda grass (couch grass)	Cynodon species		18	W	7.6	6.6	5.6	4.3
Bermuda grass, hybrids	Cynodon species	0–10, 3.7 ^b	11–33	Z	3.7	3.2	2.7	2.1
Blue grama	Bouteloua gracilis	2–10, 5.2⁵	-	Z	5.2	4.5	3.8	2.9
Buffalo grass	Buchloe dactyloides		8	w	3.4	2.9	2.5	1.9
Buffalo grass	Buchloe dactyloides	0–10, 5.3⁵	13	Z	5.3	4.6	3.9	3.0
Carpetgrass	Axonopus species	0–1, 1.5⁵	4	W, Z	1.5	1.3	1.1	0.8
Cavalier	Zoysia matrella	4	14	Х	4.0	3.4	2.9	2.2
Centipede-grass	Eremochloa ophiuroides	0–3, 1.5⁵	8–9	Z	1.5	1.3	1.1	0.8

		ECe		ECi				
Common name	Species	At 80% growth	At 50% growth	Source	25% LF (e.g. sand)ª	20% LF (e.g. sandy loam)ª	17% LF (e.g. loam)ª	12% LF (e.g. light clay)ª
Chewings fescue	Festuca rubra commutata		4	W	1.7	1.5	1.2	1.0
Colonial bentgrass	Agrostris tenuis	0–3, 1.5⁵	3	W, Z	1.5	1.3	1.1	0.8
Conquest	Cynodon dactylon	8	18	х	8.0	6.9	5.9	4.5
Creeping bentgrass	Agrostis palustris	0–10, 3.7 ^b	8–12	W, Z	3.7	3.2	2.7	2.1
Creeping red fescue	Festuca ruba L. spp ruba	3–6, 4.5⁵	8–12	Z	4.5	3.9	3.3	2.5
CT-2	Cynodon dactylon	7	16	х	7.0	6.0	5.1	3.9
Diamond	Zoysia matrella	5	21	х	5.0	4.3	3.7	2.8
Fairway wheatgrass	Agropyron cristatum	6–10, 8 ^b		Z	8.0	6.9	5.9	4.5
G1	Zoysia matrella	13	24	х	13.0	11.2	9.6	7.3
Gladstone	Sporobulus virginicus	22	30	х	22.0	19.0	16.2	12.4
Hard fescue	Festuca longifolia	3–6, 4.5⁵	4	W, Z	4.5	3.9	3.3	2.5
Hatfield	Cynodon dactylon	8	18	х	8.0	6.9	5.9	4.5
Hybrid Zoysia grass	Zoysia spp	0–11, 2.4 ^b	16	Z	2.4	2.1	1.8	1.3
JT1	Cynodon dactylon	11	20	х	11.0	9.5	8.1	6.2
Kentucky bluegrass	Poa pratensis	0–6, 3.0 ^b	3–30	Z	3.0	2.6	2.2	1.7
Kikuyu	Pennisetum clandestinum	6–10, 8.0 ^b	-	Z	8.0	6.9	5.9	4.5
Legend	Cynodon dactylon	7	17	х	7.0	6.0	5.1	3.9
Lemon alkali grass	Puccinellia lemmoni		30	W	12.7	11.0	9.3	7.1
Manila grass	Zoysia matrella		30	W	12.7	11.0	9.3	7.1
Mascarene grass	Zoysia tenuifolia		30	w	12.7	11.0	9.3	7.1
Meadow fescue	Festuca elatior		4	W	1.7	1.5	1.2	1.0
Mountain Green	Cynodon dactylon	9	17	х	9.0	7.8	6.6	5.1
Nuttall alkali grass	Puccinellia airoides		30	W	12.7	11.0	9.3	7.1
NyPa Turf	Distichlis spicata	12	27	х	12.0	10.3	8.8	6.7
Oz-E-Green	Cynodon dactylon	7	22	Х	7.0	6.0	5.1	3.9

		ECe			ECi			
Common name	Species	At 80% growth	At 50% growth	Source	25% LF (e.g. sand)ª	20% LF (e.g. sandy loam)ª	17% LF (e.g. loam)ª	12% LF (e.g. light clay)ª
Palmetto	Stentoaphrum secundatum	16	18	х	16.0	13.8	11.8	9.0
Perennial ryegrass	Lolium perenne	3–10, 6.5⁵	8–10	Z	6.8	5.9	5.0	3.8
Plateau	Cynodon dactylon	4	14	х	4.0	3.4	2.9	2.2
RB1	Sporobulus virginicus	19	37	х	19.0	16.4	14.0	10.7
Riley's Super Sport	Cynodon dactylon	9	18.5	х	9.0	7.8	6.6	5.1
Rottnest	Sporobulus virginicus	3	12	х	3.0	2.6	2.2	1.7
Rough bluegrass	Poa trivialis	0–3, 1.5⁵	4	W, Z	1.5	1.3	1.1	0.8
Royal	Zoysia matrella	5	23	х	5.0	4.3	3.7	2.8
Royal Cape II	Cynodon dactylon	7	15.5	х	7.0	6.0	5.1	3.9
Saltene	Paspalum vaginatum	24	31	х	24.0	20.7	17.6	13.5
Saltgrass	Distichlis sppstricta	6–10, 8.0 ^b >	>40	W, Z	8.0	6.9	5.9	4.5
Saphire	Stentoaphrum secundatum	10.5	16	х	10.5	9.1	7.7	5.9
Sea Isle 1	Paspalum vaginatum	4	13	х	1.0	0.9	0.7	0.6
Sea Isle 2000	Paspalum vaginatum	11–24	25–30	х	17.5	15.1	12.9	9.8
Seashore paspalum (salt water couch)	Paspalum vaginatum	0–20, 8.6 ^b	30–31	W, Z	8.6	7.4	6.3	4.8
Shademaster	Stentoaphrum secundatum	16.5	19	х	16.5	14.2	12.1	9.3
Sheep fescue	Festuca ovina		4	w	1.7	1.5	1.2	1.0
Sir James	Stentoaphrum secundatum	5	19	х	5.0	4.3	3.7	2.8
Sir Walter	Stentoaphrum secundatum	3	16	х	3.0	2.6	2.2	1.7
Slender creep. Red fescue	Festuca rura L. trichophylla	3–10, 6.3 ^b	8–12	Z	6.3	5.4	4.6	3.5
St Augustine- grass	Stentoaphrum secundatum	0–18, 6.5⁵	29	Z	6.5	5.6	4.8	3.7
ST-26	Stentoaphrum secundatum	3	16	х	3.0	2.6	2.2	1.7
ST-85	Stentoaphrum secundatum	5	21	х	5.0	4.3	3.7	2.8
ST-91	Stentoaphrum secundatum	3	9	х	3.0	2.6	2.2	1.7
Tall fescue	Festuca arundinacea	5–10, 6.5⁵	8–12	W, Z	6.5	5.6	4.8	3.7

			ECe		ECi			
Common name	Species	At 80% growth	At 50% growth	Source	25% LF (e.g. sand)ª	20% LF (e.g. sandy loam)ª	17% LF (e.g. loam)ª	12% LF (e.g. light clay)ª
TifBlair	Eremochloa ophiuroides	1–1.5	3–4	х	1.3	1.1	0.9	0.7
Velvet	Stentoaphrum secundatum	3	10.5	х	3.0	2.6	2.2	1.7
Velvet bentgrass	Agrostris canina		3	W	1.3	1.1	0.9	0.7
Velvetene	Paspalum vaginatum	14	40	х	14.0	12.1	10.3	7.9
Weeping alkali grass	Puccinellia distans		30	W	12.7	11.0	9.3	7.1
Western wheatgrass	Agropyron smithii	6–10, 8 ^b	12–16	Z	8.0	6.9	5.9	4.5
Windsor Green	Cynodon dactylon	11	19	х	11.0	9.5	8.1	6.2
Winter Gem	Cynodon dactylon	9	18	х	9.0	7.8	6.6	5.1
Wintergreen	Cynodon dactylon	4	13	х	4.0	3.4	2.9	2.2
Zorro	Zoysia matrella	9	20	х	9.0	7.8	6.6	5.1

EC = electrical conductivity in dS/m; ECe = electrical conductivity of a soil paste extract; ECi = electrical conductivity of irrigation water; LF = leaching fraction.

Note: Values in this table are indicative only; salt tolerance of all plants will vary depending on a range of factors, such as soil type, drainage, climate and turf maturity.

^a ECi has been estimated from average or mid-range ECe 80% growth, assuming limited rainfall and the specified LF, using equation 9 from Ayers and Westcot (1985). Where no ECe 80% growth was reported but average ratio (0.42) of 50%:80% growth for species was reported, this was used to estimate the ECi.

 $^{\rm b}\mbox{Average}$ root salinity tolerance (ECe dS/m)

Sources: w = Marcum (1999); x = Loch *et al* (in press). ECe values where quoted as ECi. Growth threshold was assumed to be 80% growth; z = Carrow and Duncan (1998)

 Table 32
 California turfgrass species tolerate varying levels of soil salinity. Grasses listed here are grouped by their tolerance to soil salinity (expressed as the Electrical Conductivity of soil paste extract, ECe).

Sensitive (<3 dSm ⁻¹)	Moderately Sensitive (3 to 6 dSm ⁻¹)	Moderately Sensitive (6 to 10 dSm ⁻¹)	Tolerant (>10 dSm ⁻¹)
Annual bluegrassess (Poa Annua)	Annual ryegrass (Lolium moltiflorum)	Course-leaf zoysiagrasses (Japanica type)	Alkaligrass (Puccinellia spp.)
Colonial bentgrass (Agrostis tenuis)	Buffalograss (Buchloe dactyloides)	Perennial ryegrass (Lolium perenne)	Bermudagrasses (Cynodon spp.)
Hard fescue (Festuca longifolia)	Creeping bentgrass (Agrostis palustris)	Tall fescue (Festuca arundinacea)	Fineleaf zoysiagrasses (Matrella type)
Kentucky bluegrass (Poa pratensis)	Slender, creeping red, and Chewings fescues (Festuca rubra)		Saltgrass (Distichlis spp.)
Rough bluegrass (Poa trivialis)			Seashore paspalum (Paspalum vaginatum)
			St. Augustinegrass (Stenotaphurm secundatum)

Sensitivity of native (California) plants to salinity

Common name	Botanical name	type	Native range	Salt tolerance
Apache Plume	Fallugia paradoxa	shrub	Texas west to California; Colorado to Mexico	fair
Ash	Fraxinus species	tree	Texas to California, Colorado and Utah south to Mexico	fair to poor
Bigleaf Sage	Artemesia tridentata	shrub	Dakotas, Rockies, Sierra Nevada, and Cascades; predominant in Great Basin region	low to moderate
Blanketflower	Gaillardia species	ground cover	Throughout North America	good
Blue Flax	Linum lewisii	ground cover	Alaska east to Saskatchewan and south to Kansas, Texas, New Mexico, Arizona, California	fair to poor
Blue Grama	Bouteloua gracilis	ground cover	Wisconsin to Alberta, Canada; Missouri, Texas, southern California, New Mexico	fair
Broom Baccharis	Baccharis emoryii	shrub	Texas, New Mexico, Arizona, California, Nevada, Utah, Colorado	good
Bush Penstemon	Penstemon ambiguus	ground cover	Kansas, Colorado, Utah, Texas west to California	fair
Chamisa (Rabbitbrush)	Chrysothamnus nauseosus	shrub	Western Canada south to California, Texas, northern Mexico	moderate
Cliffrose	Cowania mexicana	shrub	Southern Colorado west to southeastern California, Mexico	fair
Cottonwood	Populus fremontii and subspecies	tree	Nevada, Southwestern Utah, northern California, Arizona, New Mexico	fair
Creeping Mahonia	Berberis repens	ground cover	Texas, New Mexico, Arizona, California; north to Nebraska and British Columbia	very poor
Desert Willow (Flor de Mimbres)	Chilopsis linearis	tree	Central Texas west to California, northern Mexico	very good
Dwarf Coyotebush	Baccharis pilularis	ground cover	California coast—Sonoma to Monterey Counties	undocumented; coastal native origin suggests tolerance fair or better
Fernbush	Chamaebatieria millefolium	shrub	Idaho south to New Mexico, Arizona, California	fair
Fourwing Saltbush (Chamiso)	Atriplex canescens	shrub	New Mexico north to South Dakota and west to California	excellent
Littleleaf Sumac (Lemita)	Rhus microphylla	shrub	Washington to Missouri, California east to Texas	fair
Quaking Aspen	Populus tremuloides	tree	Alaska east to Labrador, south to Virginia; Rocky Mountains south to New Mexico and Arizona	poor
Russian Olive	Elaeagnus angustifolia 'King Red'	tree	Southern Europe and southwestern Asia. Naturalized in western U.S.	excellent
Threeleaf Sumac (Lemita)	Rhus trilobata	shrub	Washington to Missouri, California east to Texas	poor to moderate
Winterfat	Ceratoides Ianata	shrub	Canada south to Mexico, Rocky Mountains west to Pacific Coast	fair

 Table 33
 Salt Tolerance of Selected California Native Trees, Shrubs, and Ground Covers*.

Source: Tanji *et al*. 2007 *Adapted from Phillips (1987).

Handbook for Irrigation of Amenity Horticulture with Recycled Water

Table 34 Salt-t	olerant Trees and	l Shrubs for	Coastal S	Southern	California*.	
-----------------	-------------------	--------------	-----------	----------	--------------	--

Common name	Botanical name	Type of plant	Tolerant to saltwater spray?	Tolerant to saline soil?
Aleppo Pine	Pinus halepensis	tree	no	yes
Australian Tea Tree	Leptospermum laevigatum	small tree	yes	no
Beefwood	Casuarina species	tree	no	yes
Bird of Paradise Bush	Caesalpinia gilliesii	shrub or small tree	yes	no
Black Tea Tree	Melaleuca styphelioides	tree	yes	no
Blackwood Acacia	Acacia melanoxylon	shrub	yes	no
Bottlebrush	Callistemon species	shrub or small tree	yes	yes
Brazilian Pepper	Schinus terebinthifolius	tree	no	yes
California Encelia	Encelia californica	shrub	yes	no
Catalina Cherry	Prunus Iyonii	shrub or tree	yes	no
Chinese Jujube	Zizyphus jujuba	small tree	no	yes
Coral Gum	Eucalyptus torquata	tree	yes	yes
Desert Gum	Eucalyptus rudis	tree	no	yes
Dwarf Chaparral Broom	Baccharis pilularis	shrub	yes	no
Italian Jasmine	Jasminum humile	shrub	yes	no
Italian Stone Pine	Pinus pinea	tree	yes	no
Lemonade Berry	Rhus integrifolia	shrub	yes	no
Little Sur Manzanita	Arctostaphylos edmundsii	shrub	yes	no
Myoporum	Myoporum laetum	shrub or tree	no	yes
New Zealand Christmas tree	Metrosideros tomentosus	tree or large shrub	yes	yes
Oleander	Nerium oleander	shrub	no	yes
Pink Melaleuca	Melaleuca nesophila	tree or large shrub	yes	yes
Pittosporum	Pittosporum crassifolium	shrub	yes	yes
Plume Albizia	Albizia lophantha	tree	yes	no
Red Gum	Eucalyptus camaldulensis	tree	no	yes
Russian Olive	Elaeagnus angustifolia	small tree	no	yes
Saltbush	Atriplex species	shrub	yes	yes
Sandhill Sage	Artemisia pycnocephala	shrub	no	yes
Silverberry	Elaeagnus pungens	shrub	yes	no
St. Catherine's Lace	Eriogonum giganteum	shrub	yes	no
Sweet Hakea	Hakea suaveolens	shrub	yes	no
Sydney Golden Wattle	Acacia longifolia	shrub	yes	no
Tamarisk	Tamarix species	tree	no	yes
Torrey Pine	Pinus torreyana	tree	yes	no

Common name	Botanical name	Type of plant	Tolerant to saltwater spray?	Tolerant to saline soil?
Tree Mallow	Lavatera assurgentiflora	shrub	yes	yes
Willow Pittosporum	Pittosporum phillyraeoides	shrub	yes	yes

* All these plants survive well in the climate zones of the Los Angeles and San Diego areas.

Spray resistance to sodium and chloride

 Table 35
 Spray Resistance to sodium and chloride: Ground Covers, Shrubs, Tree Seedlings and Garden Foods.

Common name	Scientific name	Tolerance
Flowering Annuals and Perenni	als	
Tea rose	Rosa sp. Hybrid Tea	S
Lily of the nile	Agapanthus africanus	S
Crape myrtle	Lagerstroemia indica	S
Gazania	Gazania sp.	MS
Texas sage	Leucophyllum frutescens	MS
Lady Banks Rose	Rosa banksiae	MT
Trailing lantana	Lantana montevidensis	MT
Verbena	Verbena sp.	MT
Sunflower	Helianthus sp.	T
Vines and Ground Covers		
Vinca	Vinca major	S
Grape	Vitus sp.	S
Japanese honeysuckle	Lonicera japonica	MS
Liriope	Liriope muscari	MS
Star jasmine	Trachelospermum jasminoides	MS
Asian jasmine	Trachelospermum asiaticum	MS
Carolina jasmine	Gelsemium sempervirens	MS
English ivy	Hedera helix	MT
Strawberry	Fragaria sp.	Т
Shrubs		
Nandina	Nandina domestica	S
Photinia, "Red Tip"	Photinia fraseri	S
Pyracantha	Pyracantha fortuneana	MS
Dwarf rosemary	Rosmarinus officinalis	MS
Wild Lilac	Ceanothus thyrsiflorus	MS
Yaupon holly	llex vomitoria	MT
Euonymous	Euonymus japonica	MT
Indian hawthorne	Raphiolepis indica	MT
Buffalo juniper	Juniperus sabina Buffalo'	MT
Cotoneaster	Cotoneaster buxifolius	MT
Japanese boxwood	Buxus micropylla	Т
Oleander	Nerium oleander	T

Common name	Scientific name	Tolerance
Tree Seedlings		
Pistachie 'UCB-3'	Pistacia spp.	S
Plum	Prunus domestica	S
Apricot	Prunus americana	S
Mexican buckeye	Ungnadia speciosa	S
Chinese pistache	Pistachia chinensis	S
Sweet gum	Liquidambar styraciflua	S
Wax-leaf Ligustrum	Ligustrum japonicum	MS
Afghan pine	Pinus eldarica	MT
Mexican stone pine	Pinus cembroides	Т
Garden foods		
Almond		S
Apricot		S
Citrus		S
Plum		S
Grape		S
Pepper		MS
Potato		MS
Tomato		MS
Cucmber		MT
Sunflower		Т

Source: Miyamoto *et al.* 2004, Garden foods: ANZECC and ARMCANZ 2000 and Maas 1990 S: Sensitive (< 1 dS/m-1, Na and Cl < 150 ppm), MS: moderately sensitive (1 – 2 dS/m-1, Na < 280 ppm, Cl < 360 ppm), MT: moderately tolerant (2 – 3 dS/m-1, Na < 425 ppm, Cl < 590 ppm), and T:tolerant (> 3 dS/m-1).

 Table 36
 Spray resistance to sodium and chloride tolerance of mature trees.

Common name	Scientific name	Comment
Highly Sensitive: (Significant Dama	ge at 150 to 200 ppm of Na and Cl)	
Pecans	Carya illinoensis	Tip then margin burn
Cottonwood	Populus fremontii	Margin burn then defoliation
Sycamore	Platanous acerifolia	Margin then entire leafburn
Western Soapberry	Sapindus drummondii	Tip-burn
Sensitive (Severe damage at 350 p	pm of Na or Cl)	
Silverberry	Elaeagnus pungens	Margin burn and defoliation
Pomegranate	Punica granatum	Margin burn and defoliation
Honey Locust	Gleditsia triacanthos	Tipburn, then defoliation
Black Locust	Robina pseudoacacia	Tipburn, then defoliation
Chinese Pistache	Pistacia chinensis	Tipburn, then defoliation
Shumard Red Oak	Quercus shumardii	Tipburn, then defoliation
Bur Oak	Quercus macrocarpa	Tipburn, then defoliation
White Mulberry	Morus alba	Margin burn then defoliation
Poplar	Populus sp.	Margin burn then defoliation
Mimosa	Acacia baileyana	Tipburn then defoliation
Arizona Cypress	Cupressus arizonica	Defoliation
Oriental Arborvitae	Thuja orientalis	Defoliation

Common name	Scientific name	Comment
Osage Orange	Maclura pomifera	Defoliation
Ornamental Pears	Pyrus communis	Defoliation
Arizona, Ash	Fraxinus velutina	Tipburn then defoliation
Moderately Sensitive (Recognizab	e damage at 350 ppm of Na or Cl)	
Raywood Ash	Fraxinus angustifolia	Tipburn, then defoliation
Globe Willow	Salix matsudana 'umbraculifera'	Tipburn then defoliation
Corkscrew Willow	Salix matsudana 'tortuosa'	Tipburn then defoliation
Weeping Willow	Salix babylonica	Tipburn then defoliation
Japanese Pagoda Tree	Sophora japonica	Tipburn then defoliation
Live Oak	Quercus virginiana	Tipburn, then defoliation
Chittamwood	Bumelia lanuginosa	Tipburn, then defoliation
Texas Vitex	Vitex agnus-castus	Tipburn, then defoliation
Moderately Tolerant (Slight or occ	asional damage at 350 ppm of Na oi	r Cl)
European Olive	Olea europaea	Tipburn
Desert Willow	Chilopsis linearis	Tipburn
Holly Oak	Quercus ilex	Slight to no injury
Alligator Juniper	Juniperus deppeana pachyphlaea	Slight to no injury
Juniper	Juniperus chinensis	Slight to no injury
Rocky Mt. Juniper	Juniperus scopulorum	Slight to no injury
Honey Mesquite	Prosopis grandulosa	Slight to no injury
Tolerant (No damage at 350 ppm	of Na or Cl)	
Italian Cypress	Cupressus sempervirens	No injury
Hollywood Juniper	Juniperus chinensis 'Torulosa'	No injury
Dwarf Pittosporum	Pittosporum tobia, compacta	No injury
Oleander	Nerium oleander	No injury
Ligustrum	Ligustrum japonica	No injury
Euonyomus	Euonyomus japonica	No injury
Japanese Black Pine	Pinus thunbergiana	No injury
Afghan Pine	Pinus eldarica	No injury
Aleppo Pine	Pinus halepensis	No injury
Italian Stone Pine	Pinus pinea	No injury

Source: Miyamoto et al. 2004

7.7 Sensitivity of plants to boron

Boron tolerance of flowers

Table 37 Boron tolerance limits for cut flowers.

	Spe	Species		
Sensitivity to Boron	Common name	Botanical name	Threshold (g/m ³)	
	Geranium	Pelargonium x hortorum	0.5–1.0	
	Violet	Viola odorata	0.5–1.0	
Sensitive	Pansy	Viola tricolor	0.5–1.0	
	Zinnia	Zinnia elegans	0.5–1.0	
	Larkspur	Delphium sp.	0.5–1.0	
	China Aster	Callistephus officinalis	1.0-2.0	
	Gardenia	Gardenia sp.	1.0-2.0	
Moderately Sensitive	Gladiola	Gladiolus sp.	1.0-2.0	
	Marigold	Calendula officinalis	1.0-2.0	
	Poinsettia	Euphorbia pulcherrima	1.0-2.0	
Madarataly talarant	Carnation	Dianthus carophyllus	2.0-4.0	
Moderately tolerant	Sweet Pea	Lathyrus odoratus	2.0-4.0	

Source: Tanji et al. 2007

Boron tolerance of shrubs

		Species			
Sensitivity to boron	Common name	Botanical name	Boron level**	Observed response	Growth reduction
	Natal alum	Carissa grandiflora (E.H. Mey.) A. DC. cv. Tuttlei)	Low	No injury	0%
	Natal plum		High	No injury	0%
	Indian	Raphiolepis indica	Low	No injury	0%
	hawthorn	(l.) Lindl. cv. Enchantress	High	No injury	0%
	Chinese	Hibiscus rosa-sinesis	Low	No injury	0%
	hibiscus	L.	High	Slight premature leaf drop	0%
			Low	No injury	21%
	Oleander	r Nerium oleander L.	High	Narrow (1 to 2 mm) marginal chlorosis; slight tip burn	24%
		Buxus microphylla	Low	No injury	0%
	Japanese boxwood	Siebold and Zucc. var japonica (Mull. Arg.)	High	General marginal chlorosis with necrotic older leaves	0%
Tolerant			Low	Slight marginal coloration similar to HB	0%
Bottlebru	Bottlebrush	Callistemon citrinus (Curtis) Stapf	High	Marginal anthocyanin coloration (5 mm from leaf tip) progressed inward in semicircle pattern toward midrib; marginal and tip necrosis developed as leaves matured	0%
		Leucophylum	Low	No injury	15%
	Cenisa	frutescens (Berland.) I.M. Johnst. cv. Compactum	High	Older leaves dropped prematurely	24%
	Blue	Cordyline indivisa	Low	Tip burn, 5 to 7 cm (1973); 10 to 13 cm (1975)	0%
	dracaena	(G. Forst) Steud.	High	Tip burn, 7 to 10 cm (1973); 18 to 22 cm (1975)	0%

 Table 38
 Boron injury to leaves, and growth reduction, in 25 species of shrub*.

Sensitivity to boronCommon nameBotanical name Butanical name particulatum Gaertn.Boron level**Observed responseGrowth reductionBrush cherrySyzgium particulatum Gaertn.LowSlight anthocyanin spotting spotting: oldest leaves dropped prematurely: general appearance chlorotic and remainder of leaf appearance chlorotic and remainder of leaf and r			Species			
Semi- tolerant Brush cherry Syzgium paniculatum Gaertn. Low Slight anthocyanin spotting oldest leaves dropped prematurely general appearance chlorotic appearance chlorotic appearance chlorotic appearance chlorotic appearance chlorotic area like LB, leaves on lower and remainder of leaf 11% Southern yew Podocarpus (Thunb.) D. Don var, Maki Endl Low Slight anthocyanin spotting appearance chlorotic area like LB, leaves on lower 0% Oriental arbivitae Platycladus orientalis (L.) Franco Low Slight thorosis to necrosis on tips older leaves 27% Rosemary Rosemarius officinalis C Low Slight chlorosis to necrosis on tips older leaves 27% Rosemary Abelia X grandifora (Andre) Rehd. Low Sight chlorosis to necrosis on tips older leaves 20% Bight Bronzing and tip burn older leaves 56% 10% 30% Glossy abelia Abelia X grandifora (Andre) Rehd. Low Bronzing and tip burn older leaves; sorene taleaned leaf drop and leaves; severe leaf drop 82% Juniper Juniperus chinensis L.c. V. Armstrongii Low Moderate to severe leaf drop 82% Juniper Juniperus chinensis L.c. V. Armstrongii Low Some marginal burn and indeaves; ceret releaves of			1	Boron		
Semi- tolerantBrush cherry $$jzgiumpariculatumGaertn.Iowoldest leavesoldest leavesdropped prematurely; generalappearance chloroticband between burnand remainder of leaves(Hourb) D. Don var.Maki EndIowSlight tip burn with narrowchlorotic band between burnand remainder of leaves(Hourb) D. Don var.Maki EndIowSlight tip burn with narrowchlorotic band between burnand remainder of leaves(Hourb) D. Don var.(Mem) Maki EndSlight chlorosis to necrosis ontips older leaves(High)27%OrientalarbivitaePlatycladus orientalis(L) FrancoIowSlight chlorosis to leaves(Tip necrosis all leaves)20%Noterate to severe tip burn(L) FrancoIowSlight chlorosis to necrosis ontips older leaves27%Rosemaryofficinalis CIuipCowSlight chlorosis to necrosis ontips older leaves20%HighTip necrosis all leavesonly outside perimeter ofleaves30%JuniperAbelia X grandiffora(Andre) Rehd.IowBronzing all leaves; slight leafdrop70%HighTip and marginal leaf burnintermediate and older leaves;some hastened leaf drop82%JuniperJuniperus chinensisL. cv. ArmstrongiiIowSome marginal burn andinterventiate and olderleaves; severe leaf burninterventiate and older leaves;some hastened leaf drop82%JuniperJuniperus chinensisL. cv. ArmstrongiiIowSome marginal burn andinterventiate and olderleaves; some leaf burninterventiate and older leaves;some hastened leaf drop82%Junipe$	to boron	name		level^^		reduction
Brush cherry Gaertn. $\hat{particulatum}$ Gaertn.HighModerate anthocyanin spotting oldest leaves dropped prematurely; general appearance chlorotic band marker of leaves dropped prematurely; general appearance chlorotic band to between burn and remainder of leaves (frunch.) D. D. Dn var. Maki EndlInInInSemi- tolerant oriental arbivitaePodocarpus macrophyllus (L.) FrancoLowSlight tip burn with narrow chlorotic band between burn and remainder of leaves (remiwith narrow chlorotic area like B; leaves on lower 3/4 plant exhibited burn8%Noterate arbivitaePlatycladus orientalis (L.) FrancoLowSlight chlorosis to necrosis on tips older leaves27%Rosemary Glossy abeliaRosemarius officinalis CLowTip necrosis older leaves (Andre) Rehd.20%HighTop necrosis older leaves; only outside perimeter of plant was still green (Andre) Rehd.LowTip and marginal leaves teaves; some hastened leaf drop20%Rosemary Glossy abeliaAbelia X grandiflora (Andre) Rehd.LowTip and marginal leaves; some hastened leaf drop14%Juniper Juniperus chinensis L. cv. ArmstrongiiLowSome marginal burn older leaves; some hastened leaf drop20%Juniper Low Pritosporum tobiraLowSome marginal burn and intervenial chlorosis17%Juniper Low Pritosporum tobiraLowSome marginal burn and intervenial chlorosis17%Sensitive Euorymus japonica Thunb. vc grandifloraLowSome marginal burn and <br< td=""><td></td><td></td><td>Syzaium</td><td>Low</td><td></td><td>0%</td></br<>			Syzaium	Low		0%
Semi- tolerant Southerm yew Podocarpus macrophyllus (Thunb, D. Do nvar, Maki Endl Low chlorotic band between burn and remainder of leaf 0% Oriental arbivitae Platycladus orientalis (L) Franco High Woderate to severe tip burn (1 cm) with narrow chlorotic Biblit chlorosis to necrosis on tips older leaves; only outside perimeter of plant was still green 27% Rosemary Rosemarius officinalis C Low Slight chlorosis to necrosis older leaves; only outside perimeter of plant was still green 30% Rosemary Rosemarius officinalis C Low Bronzing and tip burn older leaves 26% Rosemary Abelia X grandiflora (Andre) Rehd. Low Bronzing all leaves; slight leaf 70% High Bronzing all leaves; slight leaf 70% 14% 28% Juniper Lantana camara L. Low Bronzing all leaves; slight leaf 70% Juniper Juniperus chinensis L. cv. Armstrongii Low Moderate to severe leaf drop 82% Juniper Ilex cornuta Lindl: and Paxt, cv. High Severe tip annal leaves; premature leaf drop 47% Japanese Pittosporum tobira Low Severe tip anumarginal burn all interv		Brush cherry	paniculatum	High	spotting; oldest leaves dropped prematurely; general	11%
Semi- tolerant(Thunb.) D. Don var. Maki EndiHighModerate to severe tip burn care like LB; leaves on lower 3/4 plant exhibited burn care like LB; leaves on lower 3/4 plant exhibited burn (are like LB; leaves on lower 3/4 plant exhibited burn officinalis on ecrosis on plant was still green8%Oriental arbivitaePlatycladus orientalis (L) FrancoLowSight chlorosis to necrosis on tips older leaves; only outside perimeter of plant was still green27%Rosemary Glossy abeliaRosemarius officinalis CLowTip necrosis older leaves; only outside perimeter of plant was still green30%Glossy abelia Abelia X grandiflora (Andre) Rehd.LowTip necrosis older leaves; only outside perimeter of plant was still green56%HighBronzing and tip burn older leaves56%HighBronzing all leaves; some hastened leaf form all leaves; severe leaf drop14%Vellow sageLantana camara L.LowTip and marginal leaf burn all leaves; severe leaf drop82%JuniperJuniperus chinensis L. cv. ArmstrongiiLowModerate tip burn all leaves; some hastened leaf drop20%JuniperJuniperus chinensis L. cv. ArmstrongiiLowSome marginal burn and intervenial chlorosis17%JuniperJuniperus chinensis L. cv. ArmstrongiiLowSome marginal burn and intervenial chlorosis17%JuniperPritosporum BurnordiiLowSome marginal burn and intervenial chlorosis17%SensitivePritosporum tobira phitosporum		Southorn		Low	chlorotic band between burn	0%
Oriental arbivitaePlatycladus orientalis (L) FrancoLowSlight chlorosis to necrosis old reves27%Rosemary Glossy abeliaRosemarius officinalis CLowTip necrosis older leaves; only outside perimeter of plant was still green30%Rosemary Glossy abeliaRosemarius officinalis CLowTip necrosis older leaves; only outside perimeter of plant was still green20%Glossy abeliaAbelia X grandiflora (Andre) Rehd.LowBronzing and tip burn older leaves; and tip burn older leaves; slight leaf drop56%Yellow sageLantana camara L.LowTip and marginal leaf burn intermediate and older leaves; some hastened leaf drop14%JuniperJuniperus chinensis L. cv. ArmstrongiiLowModerate to severe leaf burn all leaves; severe tip burn older leaves; center leaves of plant dead20%JuniperJuniperus chinensis L. cv. ArmstrongiiLowSome marginal burn and tips and marginal burn and teaves; center leaves of plant dead47%SensitivePitosporum tobiraLowSome marginal burn and teaves; premature leaf drop50%Japanese pittosporumPitosporum tobiraLowSome marginal burn and tip burn dead17%SensitiveSpindle tree iaponica Thunb. cv. Grand/floraLowSight tip burn; slight leaf drop50%Spindle treeEuonymus iaponica Thunb. cv. Grand/floraLowSight tip burn; slight leaf drop4%			(Thunb.) D. Don var.	High	(1 cm) with narrow chlorotic area like LB; leaves on lower	8%
arbivitae(L) FrancoHighSevere necrosis older leaves; oplant was still green30%RosemaryRosemarius officinalis CLowTip necrosis older leaves20%RosemaryAbelia X grandiflor (Andre) Rehd.LowBronzing and tip burn older leaves56%Glossy abeliaAbelia X grandiflor (Andre) Rehd.LowBronzing all leaves; slight leaf drop70%Yellow sageLantana camara L.LowTip and marginal leaves; slight leaf drop70%JuniperLantana camara L.LowTip and marginal leaves; slight leaf drop14%JuniperLantana camara L.LowModerate to severe leaf burn all leaves; severe leaf drop82%JuniperJuniperus chinensis L. cv. ArmstrongiiiLowModerate to severe leaf drop leaves; center leaves of plant dead47%JuniperIlex cornuta Lindl. and Paxt. cv.LowSome marginal burn and interveinal chlorosis17%Japanese pittosporumPittosporum tobiraLowSome marginal burn and interveinal chlorosis50%Japanese pittosporumPittosporum tobiraLowSlight tip burn; slight leaf drop all leaves; young leaves chlorotic with moderate to severe marginal and tip burn; slight leaf drop all leaves; young leaves chlorotic with moderate to severe marginal and tip burn; slight leaf drop all leaves; young leaves chlorotic with moderate to severe marginal and tip burn; slight leaf drop all leaves; young leaves chlorotic with moderate to severe marginal and tip burn; slight leaf50% <td>lolerant</td> <td>Oriental</td> <td>Platucladus ariantalis</td> <td>Low</td> <td></td> <td>27%</td>	lolerant	Oriental	Platucladus ariantalis	Low		27%
RosemaryNoderinality officinality CHighTip necrosis all leaves51%Glossy abeliaAbelia X grandiflora (Andre) Rehd.LowBronzing and tip burn older leaves56%HighBronzing all leaves; slight leaf drop70%Yellow sageLantana camara L.LowTip and marginal leaf burn some hastened leaf drop14%JuniperLantana camara L.LowModerate to severe leaf burn all leaves; severe leaf drop82%JuniperJuniperus chinensis L. cv. ArmstrongiiLowModerate to severe leaf burn all leaves; severe leaf drop82%Chinese hollyIlex cornuta Lindl. and Paxt. cv. BurfordiiLowSome marginal burn and interveinal chlorosis47%Japanese pittosporumPittosporum tobiraLowSome marginal burn and interveinal chlorosis50%Spindle treeEuonymus GrondifforaLowMargin burn and tip burn odistal half older leaves; young leaves thront tips50%Spindle treeEuonymus GrondifforaLowSevere chlorosis and tip burn; slight leaf drop4%				High	only outside perimeter of	30%
SensitiveDifficitialisticHighTip necrosis all leaves51%Glossy abeliaAbelia X grandiflora (Andre) Rehd.LowBronzing and tip burn older leaves56%HighBronzing all leaves; slight leaf drop70%Yellow sageLantana camara L.LowTip and marginal leaf burn intermediate and older leaves; some hastened leaf drop14%JuniperJuniperus chinensis L. cv. ArmstrongiiLowModerate to severe leaf burn all leaves; severe leaf drop82%JuniperJuniperus chinensis L. cv. ArmstrongiiLowModerate to severe leaf burn all leaves; center leaves of plant deaves20%SensitiveChinese hollyIlex cornuta Lindl. and Paxt. cv. BurfordiiLowSome marginal burn and interveinal chlorosis17%Japanese pittosporumPittosporum tobiraLowSome marginal burn all leaves; premature leaf drop88%Spindle treeFitosporum tobiraLowSome marginal burn all leaves; premature leaf drop50%Spindle treeFitosporum tobiraLowSime attractive to severe marginal and tip burn; slight leaf and tip burn; slight leaf drop50%		Decement	Rosemarius	Low	Tip necrosis older leaves	20%
Abelia X grandiflora (Andre) Rehd.LowIeavesIeaves30%IeavesGlossy abeliaAbelia X grandiflora (Andre) Rehd.HighBronzing all leaves; slight leaf (drop70%HighBronzing all leaves; slight leaf (dropTip and marginal leaf burn intermediate and older leaves; some hastened leaf drop14%Vellow sageLantana camara L.LowTip and marginal leaf burn intermediate and older leaves; some hastened leaf drop82%JuniperJuniperus chinensis L. cv. ArmstrongiiLowModerate to severe leaf burn leaves; center leaves of plant dead82%JuniperJuniperus chinensis L. cv. ArmstrongiiLowModerate tip burn all leaves; except perimeter of new leaves; center leaves of plant dead47%SensitiveIlex cornuta Lindl. and Paxt. cv. BurfordiiLowSome marginal burn and interveinal chlorosis17%Japanese pittosporumPittosporum tobiraLowMargin burn and tip burn distal half older leaves; premature leaf drop50%Japanese pittosporumPittosporum tobiraLowMargin burn and tip burn song leaves thorotic with moderate to severe marginal and tip burn; small rosettes young leaves at branch tips50%Spindle treeEuonymus GrandifloraLowSevere chlorosis and tip burn slight tip burn; slight leaf drop4%		Rosemary	officinalis C	High	Tip necrosis all leaves	51%
Glossy adelia(Andre) Rehd.HighBronzing all leaves; slight leaf drop70%NameNameAndre) Rehd.HighBronzing all leaves; slight leaf drop70%NameNameNameIp and marginal leaf burn intermediate and older leaves; some hastened leaf drop14%NameLantana camara L.LowTip and marginal leaf burn intermediate and older leaves; some hastened leaf drop82%JuniperJuniperus chinensis L. cv. ArmstrongiiLowModerate to severe leaf burn leaves; center leaves of plant except perimeter of new leaves; center leaves of plant dead20%SensitiveIlex cornuta Lindl. and Paxt. cv. BurfordiiLowSome marginal burn and interveinal chlorosis17%SensitivePittosporum tobira pittosporumLowSome marginal burn and interveinal chlorosis50%Japanese pittosporumPittosporum tobiraLowMargin burn and tip burn distal half older leaves; premature leaf drop50%Spindle treeEuonymus gaponica Thunb. cv. GradifiloraLowSinght tip burn; slight leaf slight tip burn; slight leaf4%	Glossy abe	Classy shalis		Low		56%
Yellow sageLantana camara L.Lowintermediate and older leaves; some hastened leaf drop14%HighModerate to severe leaf burn all leaves; severe leaf drop82%JuniperJuniperus chinensis L. cv. ArmstrongiiLowModerate tip burn older leaves; center leaves of plant dead20%SensitiveChinese hollyIlex cornuta Lindl. and Paxt. cv. BurfordiiLowSevere tip burn all leaves; except perimeter of new leaves; center leaves of plant dead17%SensitivePrimese hollyIlex cornuta Lindl. and Paxt. cv. BurfordiiLowSome marginal burn and interveinal chlorosis17%Japanese pittosporumPittosporum tobiraLowSome marginal burn all leaves; premature leaf drop88%Spindle treeEuonymus japonica Thunb. cv. GrandifloraLowSlight tip burn; slight leaf drop50%HighSevere chlorosis and tip burn voung leaves at branch tipsSome44%		Glossy abelia		High		70%
SensitiveJuniperJuniperus chinensis L. cv. ArmstrongiiLowModerate tip burn older leaves20%SensitiveJuniperus chinensis L. cv. ArmstrongiiLowModerate tip burn older leaves20%Chinese hollyJuniperus chinensis L. cv. ArmstrongiiLowSevere tip burn all leaves, except perimeter of new leaves; center leaves of plant dead47%SensitiveIlex cornuta Lindl. and Paxt. cv. BurfordiiLowSome marginal burn and interveinal chlorosis17%Japanese pittosporumPremature leaf drop88%Japanese pittosporumPittosporum tobiraLowMargin burn and tip burn distal half older leaves; premature leaf drop50%Spindle treeEuonymus japonica Thunb. cv. GrandiforaLowSlight tip burn; slight leaf drop4%HighEvere chlorosis and tip burn drop4%		Yellow sage	Lantana camara L.	Low	intermediate and older leaves;	14%
JuniperJuniperJuniperus chinensis L. cv. ArmstrongiiLowSevere tip burn all leaves, except perimeter of new leaves; center leaves of plant dead47%SensitiveChinese hollyIlex cornuta Lindl. and Paxt. cv. BurfordiiLowSome marginal burn and interveinal chlorosis17%SensitivePittosporum tobiraLowSome marginal burn and interveinal chlorosis50%Japanese pittosporumPittosporum tobiraLowMargin burn and tip burn distal half older leaves; premature leaf drop50%Spindle treeEuonymus japonica Thunb. cv. GrandifforaLowSlight tip burn; slight leaf drop4%				High		82%
JumperL. cv. ArmstrongiiHighexcept primer of new leaves; center leaves of plant dead47%SensitiveChinese hollyIlex cornuta Lindl. and Paxt. cv. BurfordiiLowSome marginal burn and interveinal chlorosis17%SensitiveChinese hollyIlex cornuta Lindl. and Paxt. cv. BurfordiiLowSome marginal burn and interveinal chlorosis17%Japanese pittosporumPittosporum tobiraLowSome marginal burn and tip burn distal half older leaves; premature leaf drop50%Japanese pittosporumPittosporum tobiraLowMargin burn and tip burn distal half older leaves; premature leaf drop all leaves, except very youngest; young leaves chlorotic with moderate to severe marginal and tip burn; small rosettes young leaves at branch tips50%Spindle treeEuonymus japonica Thunb. cv. GrandifforaLowSlight tip burn; slight leaf drop4%				Low		20%
Sensitive Ilex cornuta Lindl. and Paxt. cv. Burfordii Low interveinal chlorosis 17% Sensitive Chinese holly Paxt. cv. Burfordii High Tip and marginal burn all leaves; premature leaf drop 88% Japanese pittosporum Pittosporum tobira Low Margin burn and tip burn distal half older leaves; premature leaf drop 50% Premature leaf drop Premature leaf drop all leaves, except very youngest; young leaves chlorotic with moderate to severe marginal and tip burn; small rosettes young leaves at branch tips 50% Spindle tree Euonymus japonica Thunb. cv. Grandiflora Low Slight tip burn; slight leaf drop 4%		Juniper		High	except perimeter of new leaves; center leaves of plant	47%
Sensitive Burfordii High Tip and marginal burn all leaves; premature leaf drop 88% Japanese pittosporum Pittosporum tobira Low Margin burn and tip burn distal half older leaves; premature leaf drop 50% Premature leaf drop Pittosporum tobira Low Margin burn and tip burn distal half older leaves; premature leaf drop 50% Spindle tree Euonymus japonica Thunb. cv. Grandiffora Euonymus japonica Thunb. cv. Grandiffora Low Slight tip burn; slight leaf drop 4%		Chinaga hallu		Low		17%
Japanese pittosporum Pittosporum tobira Low distal half older leaves; premature leaf drop 50% Pittosporum Pittosporum tobira Image: Pittosporum tobira Premature leaf drop all leaves, except very youngest; young leaves chlorotic with moderate to severe marginal and tip burn; small rosettes young leaves at branch tips 50% Spindle tree Euonymus japonica Thunb. cv. Grandiffora Low Slight tip burn; slight leaf drop 4% High Severe chlorosis and tip burn 100%	Sensitive	Chinese holly		High		88%
Pittosporum Pittosporum tobira Ieaves, except very youngest; young leaves chlorotic with moderate to severe marginal and tip burn; small rosettes young leaves at branch tips 50% Spindle tree Euonymus japonica Thunb. cv. Grandiflora Low Slight tip burn; slight leaf drop 4% High Severe chlorosis and tip burn 100%				Low	distal half older leaves;	50%
Spindle tree <i>Euonymus</i> <i>japonica Thunb. cv.</i> <i>Grandiflora</i> <i>Luw</i> drop <i>drop</i> <i>urde</i> Severe chlorosis and tip burn <i>100%</i>				High	leaves, except very youngest; young leaves chlorotic with moderate to severe marginal and tip burn; small rosettes	50%
Grandiflora High Severe chlorosis and tip burn 100%		Coindle tree		Low		4%
		spinale tree		High		100%

	Species				
Sensitivity to boron	Common name	Botanical name	Boron level**	Observed response	Growth reduction
	Pineapple guava	Feijoa sellowiana O. Berg	Low	Slight tip burn 1st year; moderate leaf drop, moderate tip, and marginal burn 1974 and 1975	13%
			High	Severe leaf drop; all leaves showed severe tip and marginal burn; youngest leaves also chlorotic	35%
	Wax-leaf privet	Ligustrum japonicum Thunb.	Low	No apparent injury symptoms, except reduced growth	17%
			High	Terminal 1/2 to 2/3 of branches dead; necrotic spotting older leaves; nearly completely defoliated	100%
	Laurustinus	Viburnum tinus L. cv. Robustum	Low	Marginal and tip burn intermediate and older leaves; moderate leaf drop	0%
			High	Severe tip and marginal burn all leaves, except very youngest	100%
	Thorny elaeagnus	Elaegnus pungens Tnunb. cv. Fruitlandii	Low	Older leaves interveinal and marginal chlorosis on distal half of leaf	11%
Sensitive			High	Severe chlorosis with marginal necrosis; severe leaf drop nearly all, but youngest, leaves; remaining leaves hypnonastic	70%
	Xylosma	Xylosma congestum (Lout.) Merrill	Low	Older leaves anthocynanin mottling and tip burn; more severe by mid-summer; severe leaf drop older leaves	23%
			High	Many branches dead; anthocyanin mottling and severe tip burn all leaves; nearly complete leaf drop	100%
	Photinia	Photinia X Fraseri Dress	Low	Marginal and tip burn older leaves	0%
			High	Severe leaf burn; severe leaf drop; stem tips dead; death mid-1974	100%
	Oregon Mahonia aquifoli grape (Pursh) Nutt.		Low	Tip necrosis young leaves; severe leaf drop older leaves	50%
		Mahonia aquifolium (Pursh) Nutt.	High	Severe leaf drop, except very youngest; severe burn older and intermediate leaves; tip burn young leaves; barely survived 1st year (1973).	100%

* Excerpted from Francois and Clark (1979).

** Boron concentrations were 2.5 mg/L for low concentration and 7.5 mg/L for high concentration. Control plants were treated with 0.5 mg/L boron.

Boron tolerance of ornamentals

Table 39	Boron	tolerance	limits for	ornamentals*.	

Sensitivity to	Species**		
boron	Common name	Botanical name	Threshold (g/m ³)
	Oregon grape	Mahonia aquifolium	< 0.5
	Photinia	Photinia X Fraseri	< 0.5
	Xylosma	Xylosma congestum	< 0.5
	Thorny elaeagnus	Elaegnus pungens	< 0.5
	Laurustinus	Viburnum tinus	< 0.5
	Wax-leaf privet	Ligustrum japonicum	< 0.5
Very sensitive	Pineapple guava	Feijoa sellowiana	< 0.5
	Spindle tree	Euonymus japonica	< 0.5
	Japanese pittosporum	Pittosporum tobira	< 0.5
	Chinese holly	llex cornuta	< 0.5
	Juniper	Juniperus chinensis	< 0.5
	Yellow sage	Lantana camara	< 0.5
	American elm	Ulmas americana	< 0.5
	Zinnia	Zinnia elegans	0.5-1.0
	Pansy	Viola tricolor	0.5-1.0
	Violet	V. adorata	0.5-1.0
Sensitive	Larkspur	Delphinium sp.	0.5-1.0
Sensitive	Glossy abelia	Abelia X grandiflora	0.5-1.0
	Rosemary	Rosemarius officinalis	0.5-1.0
	Oriental arbivitae	Platycladus orientalis	0.5–1.0
	Geranium	Pelargonium X hortorum	0.5-1.0
	Gladiolus	Gladiolus sp.	1.0-2.0
	Marigold	Calendula officinalis	1.0-2.0
	Poinsettia	Euphlorba pulcherrieucs	1.0-2.0
	China aster	Callistephus chinensis	1.0-2.0
Moderately sensitive	Gardenia	Gardenia sp.	1.0-2.0
	Southern yew	Podocarpus macrophyllus	1.0-2.0
	Brush cherry	Syzgium paniculatum	1.0-2.0
	Blue dracaena	Cordyline indivisa	1.0-2.0
	Cenisa	Leucophylum frutescens	1.0-2.0
	Bottlebrush	Callistemon citrinus	2.0-4.0
	California poppy	Eschscholzia californica	2.0-4.0
	Japanese boxwood	Buxus microphylla	2.0-4.0
Moderately tolerant	Oleander	Nerium oleander L.	2.0-4.0
tolerant	Chinese hibiscus:	Hibiscus rosa-sinesis	2.0-4.0
	Sweet pea	Larkyrus odorarus	2.0-4.0
	Carnation	Dianthus caryophyllus	2.0-4.0
	Indian hawthorn	Raphiolepis indica	6.0-8.0
Tolerant	Natal plum	Carissa grandiflora	6.0-8.0
	Oxalis	Oxalis bouiei	6.0-8.0

Source: Tanji *et al.* 2007 * After Maas, 1984 ** Species listed in order of increasing tolerance, based on appearance as well as growth

Boron tolerance of commercial crops

Table 40 Maximum boron concentrations in irrigation or soil water tolerated by a variety of plants, without reduction in yields.

Tolerance	Boron in irrigation or soil water (mg/L)	Plant
Very intolerant	< 0.5	Blackberry, lemon, avocado, grapefruit
Intolerant	0.5-1.0	Peach, cherry, plum, grape, onion, garlic, sweet potato, sunflower, mung bean, sesame, lupin, strawberry, Jerusalem artichoke, kidney bean, lima bean, snap bean, peanut
Moderately intolerant	1.0-2.0	Broccoli, capsicum, pea, carrot, radish, potato, cucumber, lettuce, olive, pumpkin, radish
Moderately tolerant	2.0-4.0	Kentucky blue grass, cabbage, turnip, corn, artichoke, mustard, sweet clover, squash, musk melon, cauliflower
Tolerant	4.0-6.0	Tomato, alfalfa, parsley, red beet, sugar-beet
Very tolerant	6.0-15.0	Most grasses, asparagus, celery

Source: ANZECC and ARMCANZ 2000; Keren and Bingham 1985; Carrow and Duncan 1998.

7.8 Estimating leaching requirements

Leaching requirements are often needed to manage salts applied with recycled water. There are several methods for calculating the leaching requirement for a specific water salinity to maintain soil salinity at acceptable levels for the desired plant growth. The methods below give an indication of a leaching requirement (LR) for two types of irrigation (Figure 19):

- 1. Conventional irrigation (LRc), where the soil is allowed to dry out significantly between irrigations (Similar to the method of Ayers and Westcot 1985).
- 2. High frequency irrigation (LRf), where there is limited drying out of the root zone between irrigations.

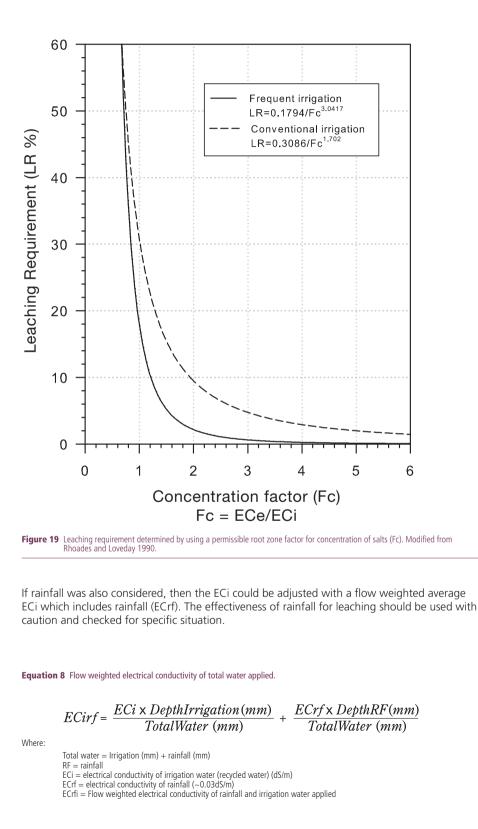
All methods of determining leaching requirements are estimates and should be checked by measuring actual soil salinity levels and modifying leaching requirements (LR) accordingly.

An example of calculations to estimate leaching requirements is:

You wish to grow a turf plant *Festuca ruba* L. spp ruba (Creeping red fescueum). The plants ECe threshold where 80% growth is acceptable by the user is estimated to be 3 dS/m at a worse case scenario. The recycled water salinity is an ECi of 1.5 dS/m. Then:

$$Fc = ECe threshold/ECi$$

= 3/1.5


= 2

Where Fc = concentration factor

ECi = irrigation water electrical conductivity

Using Figure 19, an Fc of 2 is equivalent to a 3% (high frequency irrigation; LRf) or 9.5% (conventional irrigation; LRc).

The average root zone salinity is impacted by soil water depletion between irrigation. If all other parameters remain constant and a LR is applied, high frequency irrigation leads to a higher average integrated plant available water (lower integrated rootzone salinity) as the period between wetting and drying is less and the extremes of drying less. In addition the more saline the soil or water the higher the osmotic potential and the less plant available water. Therefore the plant available water will be lower under conventional irrigation (Rhoades and Loveday, 1990) and average root zone salinity higher.

A targeted approach to the application of the leaching requirement can add to its effectiveness. Applying leaching requirements during the wet season will provide the following benefits:

- 1. Low evapotranspiration, which reduces losses to the atmosphere, maximising downward leaching.
- 2. Improved leaching, as generally the soil profile will have a higher soil water content.
- 3. Water applied through rainfall and irrigation will have a lower average salinity, improving leaching effectiveness by decreasing soil salinity on the rootzone.

An important consideration to the application of leaching requirements is the off-site impacts associated with the application of irrigation water that is greater than plant requirement. While sustainable irrigation requires an appropriate leaching fraction, this leaching fraction can have off-farm implications, including:

- 1. A contribution to ground watertables. (Depending on the depth to watertable/aquifer). Can the regional hydrology handle this extra water input? Will watertables rise, leading to increased salinisation of soils on a regional scale?
- 2. Any movement of water out of the root zone of plants will lead to the movement of nutrients. This movement of nutrients can lead to the eutrophication of ground and terrestrial waters.

The calculation of leaching fractions often assumes that there are no barriers in the soil profile that could potentially impede water movement, creating perched watertables (p 57). These barriers could include sodic clay, sheet limestone (calcrete), or compacted soil layers. These should generally be identified in the preliminary soil survey conducted prior to scheme development.

The impact of leaching fraction (LF), given an irrigation water salinity (ECi), on soil salinity can also be estimated using Figure 20. This figure can also be used to estimate a leaching requirement (LR). For example, if the plants ECe threshold where 80% growth is acceptable by the user is estimated to be 3 dS/m at a worse case scenario. The recycled water salinity is an ECi of 1.5 dS/m; a LF of approximately 9% (similar to LRc above) would be required to maintain soil salinity (ECe) at an average of 3 dS/m.

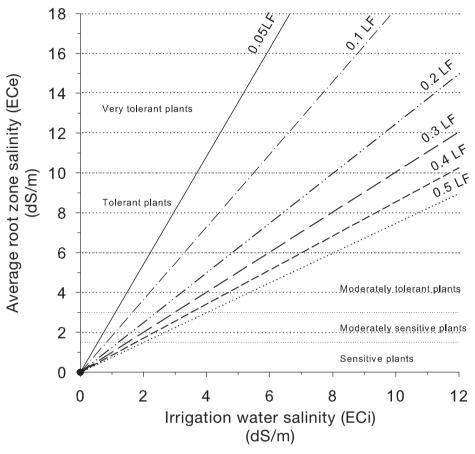


Figure 20 Relationship between average root zone salinity (ECe) and electrical conductivity of irrigation water (ECi), as a function of leaching fraction (LF) and plant salt tolerance. Source: adapted from Rhoades *et al.* 1992

7.9 Sensitivity of plants to phosphorus

Phosphorus sensitivity of Australian native plants

Plants healthy across P addition range, with no growth without P to the greatest growth with highest P addition				
ericifolia lius				
rata, irid-grisea				
aceum, rinum, erum,				
ric ace rin				

Table 41 Relative phosphorus (P) sensitivity of a range of Australian native plants (Score 1 = tolerant to Score 7 = sensitive)

Genus	Species	Genus	Species
Banksia	audax, elderana, laevigata, lanata, littoralis, menziesii, petiolaris, speciosa	Lobelia	heterophylla, tenuior
Beaufortia	micrantha, orbifolia	Lotus	australis, cruentus
Beyeria	lechenaultii	Lysiphyllum	cunninghamii
Billardiera	cymosa	Maireana	brevifolia, sedifolia
Bonamia	rosea	Melaleuca	acerosa, acuminata, armillaris, brevifolia, cardiophylla, citrina, cliffortioides, coccinea, concreta, cordata, cucullata, cuticularis, decussata, densa, depressa, diosmifolia, dissitiflora, elliptica, ericifolia, filifolia, fulgens, gibbosa, glaberrima, globifera, glomerata, halmaturorum, hamulosa, huegelii, holosericea, hypericifolia, incana, lanceolata, lateralis, lateriflora, lateritia, laxiflora, leiocarpa, leucadendra, microphylla, nesophylla, pentagona, pulchella, radula, rhaphiophylla, sheathiana, spathulata, spicigera, squamea, squarrosa, steedmanii, striata, stypheloides, suberosa, subfalcata, thymoides, thyoides, trichophylla, uncinata, undulata, urceolaris, viminea, viridiflora, wilsonii
Boronia	denticulata	Mirbelia	spinosa
Bossiaea	ericocarpa, foliosa, heterophylla, pulchella, rhombifolia	Myoporum	acuminatum
Brachychiton	acerifolius, diversifolia	Myriocephalus	stuartii
Brachysema	aphyllum, lanceolatum, latifolium	Neptunia	monosperma
Callistemon	brachyandrus, citrinus, glaucus, phoenicius, pinifolius, pungens, rigidus, rugulosus, sieberi, speciosus, viminalis	Olearia	teretifolia
Callitris	columnellaris, preissii	Orthrosanthus	multifrorus
Calocephalus	brownii, citreus	Oxylobium	atropurpurea, cuneatum, lanceolatum, racemosum
Calothamnus	asper, chrysantherus, quadrifidus, sanguineus, tuberosus, validus, villosus	Pandorea	pandorana
Canavalia	papuana	Pavonia	hastata
Casuarina	cristata, glauca	Petalostylis	labicheoides, millefolium

Genus	Species	Genus	Species
Chorizema	cordatum, dicksonii, diversifolium, ilicifolium	Petrophile	canescens, carduacea, diversifolia, heterofolia, longifolia, serruriae
Conostylis	aculeata, candicans	Phymatocarpus	porphyrocephalus
Convolvulus	erubescens, remotus	Pittosporum	phylliraeiodes
Crotalaria	retusa, novae-hollandiae	Plantago	varia
Daviesia	benthamii, corymbosa, flexuosa, latifolia, longifolia	Podolepis	rugata
Diplolaena	grandiflora	Psoralea	cinerea, martinii, plumosa
Diplopeltis	eriocarpa	Pultenaea	reticulata
Dodonaea	aperta, ceratocarpa, hackettiana, inaequifolia, lobulata, microzyga, ptarmicifolia, stenozyga, viscosa	Radyera	farragei
Dryandra	baxteri, ferruginea, fraseri, nobilis, serratuloides, sessilis, shuttlworthiana, stuposa	Regelia	ciliata
Enchylaena	tomentosa	Rhagodia	candolleana, crassifolia, parabolica, preissii, spinescens
Eremaea	ebracteata, pauciflora	Samolus	junceus
Gastrolobium	spinosum	Senna	artemisioides, helmsii, odorata, pleurocarpa, venusta
Goodenia	stapfiana	Sesbania	cannabina, simpliciuscula
Goodia	lotifolia	Sida	calyxhymenia, rholenae
Gossypium	sturtianum	Solanum	linearifolium, simile, symonii
Grevillea	crithmifolia, robusta	Stylidium	adnatum
Hakea	arborescens, brooksiana, commutata, coriacea, dactyloides, eriantha, falcata, macraeana, nodosa, suaveolens, verrucosa, vittata	Swainsona	canescens, colutoides, formosus, tephrotricha, villosa
Hannafordia	quadrivalvis	Templetonia	egena, sulcata
Hardenbergia	comptoniana	Thomasia	petalocalyx
Hibiscus	farragei	Thryptomene	australis
Hovea	crispa, trisperma	Velleia	cycnopotamica, panduriformis, trinervis
Hypocalymma	angustifolium	Villarsia	capitata
Indigofera	australis	Viminaria	juncea
Isopogon	ceratophyllus	Wahlenbergia	preissii
Isotropis	atropurpurea, divergens	Waitzia	acuminata
Jacksonia	sternbergiana	Xanthorrhoea	quadrangulata, semiplana
Kennedia	beckxiana, eximea, prorepens, rubicunda, stirlingii	Zygophyllum	aurantiacum
Keraudrenia	hermanniifolia		

Genus	Species	Genus	Species
Score 2	Plants healthy across P addition phosphorus Greatest growth was with hig	-	some growth without
Acacia	complanata, cuthbertsonii, fasciculifera, pyrifolia, validinevia, viscidula	Flindersia	australis
Actinostrobus	pyramidalis	Hakea	cycloptera, gibbosa, muelleriana
Banksia	ashbyi, brownii, caleyi, lemanniana, nutans, occidentalis, pilostylis, prionotes, pulchella, repens, violacea	Isopogon	dubius
Dodonaea	hexandra	Platylobium	obtusangulum
Dryandra	arborea, carduacea, formosa, obtusa		
Score 3	All plants healthy, with some of Largest plants with second high		oxicity evident
Abutilon	lepidum	Gastrolobium	bilobum
Acacia	amoena, blakelyi, deanei, difformis, dodonaeifolia, eremaea, exocarpoides, fauntleroyi, hemignosta, leptospermoides, maitlandii, megalantha, monticola, murrayana, neriifolia, orthocarpa, oxyclada, pachyacra, parramattensis, pellita, perangusta, pruinocarpa, pubicosta, prifolia, rubida, semilunata, siculiformis, torulosa, trachycarpa, triptera, uncinata, vestita, wildenowiana, xanthina, xylocarpa	Gomphrena	affinis
Allocasuarina	campestris, lehmanniana	Hakea	adnata, baxteri, cristata, epiglottis, ferruginea, flabellifolia, platysperma, sericea, stenophylla
Alternanthera	nana	Jacksonia	sericea
Amaranthus	pallidiflorus	Kennedia	coccinea
Anigozanthos	viridis	Lotus	cruentus
Banksia	aemula, candolleana, coccinea, leptophylla, marginata, robur	Melochia	pyramidata
Bossiaea	ensata, scolopendria	Mirbelia	dilatata, ramulosa
Canavalia	maritima	Oxylobium	capitatum, ellipticum, parviflorum
Casuarina	obesa	Patersonia	occidentalis
Crotalaria	cunninghamii	Petrophile	fastigiata
Daviesia	acicularis, decurrens, physodes, revoluta, rhombifolia, teretifolia, umbellata	Santalum	acuminatum

Genus	Species	Genus	Species
Dillwynia	brunioides, dillwynioides	Senna	luerssenii, oligophylla, planitiicola
Dryandra	calophylla, carduacea, carlenoides, mucronulata, polycephala, quercifolia, tenuiifolia, vestita		
Score 4	Slight toxicity at highest P rat	e, largest plants in	second highest P rate
Abrus	precatorius	Gossypium	robinsonii
Acacia	chincillensis, declinata, erinacea, glaucoptera, havilandii, iteaphylla, lineata, longispinea, lysiphloia, melliodora, merinthopora, papyricarpa, paradoxa, patagiata, rhodophloia, saligna, sessilispica, sibina, stereophylla, subcaerulea, terminalis, triptycha, uncinella, williamsonii	Grevillea	biternata, pterosperma
Adansonia	gregorii	Hakea	brachyptera, crassifolia, leucoptera, oleifolia, orthorrhyncha, petiolaris, rostrata, salicifolia
Banksia	attenuata, burdettii, ericifolia, integrifolia, laricina, media, oblonga, tricuspis, ornata, media	Isopogon	anethifolius
Bossiaea	aquifolium, webbii	Leptospermum	laevigatum
Brachysema	aphyllum	Melaleuca	eleutherostachya, leptospermioides, leucodendron
Calothamnus	pinifolius, rupestris	Olearia	floribunda
Conospermum	taxifolium	Plantago	drummondii
Crotalaria	cunninghamii, verrucosa	Psoralea	badocana, lachnostachys
Darwinia	diosmoides	Pultenaea	dasyphylla
Daviesia	angulata, cordata, divaricata, horrida	Senna	pruinosa
Diplopeltis	huegelii	Sesbania	erubescens
Dryandra	pulchella	Sollya	heterophylla
Gastrolobium	laytonii	Sphaerolobium	fornicatum
Goodenia	corynocarpa, redacta	Swainsona	decurrens
Tephrosia	flammea		

Genus	Species	Genus	Species
Score 5	Severe P toxicity at highest P		
Acacia	ancistrocarpa, citrinoviridis, dawsonii, denticulosa, dictyopyhleba, fauntleroyi, fragilis, gillii, granitica, hilliana, imbricata, latipes, leioderma, lycopodifolia, mollifolia, nodiflora, pachycarpa, phlebopetala, pilligaensis, pinguifolia, pustula, quadrisulcata, retivenia, rossei, rupicola, saliciformis, shirleyi, signata, stricta, tenuissima, tetragonocarpa, trachyphloia, urophylla, wanyu	Gomphrena	canescens
Amaranthus	mitchellii	Gossypium	australe
Banksia	aculeata, canei, cunninghamii, grandis, victoriae	Hakea	corymbosa, costata, eyreana, minyma, nitida, undulata
Bossiaea	preissii	Indigofera	boviperda, colutea, georgei, hirsuta
Calothamnus	affinis, blepharospermus	Isopogon	alicornis
Daviesia	incrassata, mimosioides, polyphylla, wyattiana	Jacksonia	floribunda
Dodonaea	caespitosa, microzyga, petiolaris, viscosa sspspathulata	Pultenaea	capitata
Dryandra	ashbyi, cuneata, falcata, foliosissima, nivea, pteridifolia	Sida	corrugata
Gastrolobium	spinosum var grandiflorum	Stylidium	scandens
Glycirrhiza	acanthocarpa	Thespesia	populneoides
Gompholobium	marginatum, tomentosum		
Score 6	Considerable P toxicity at high lowest P rates, plants were sm	nest two P rates, be aller without P	est plants were at the two
Acacia	alata, anaticeps, aphylla, aspera, auriculiformis, boormanii, cochlearis, cultriformis, drepanocarpa, dunnii, gilbertii, gladiiformis, hemiteles, hilliana, kempeana, ligustrina, minutifolia, multispicata, nervosa, neurophylla, nitidula, notabilis, rhigiophylla, sessilis, siculiformis, spectabilis, unifissilis, victoriae, wattsiana, wilhemiana	Hardenbergia	violacea
Achyranthes	aspera	Hibiscus	meraukensis
Actinostrobus	arenarius	Isopogon	axillaris, formosus
Agonis	acutivalvis, obtusissima	Jacksonia	furcellata, lehmannii
Alyogyne	huegelii	Kennedia	prostrata

Genus	Species	Genus	Species
Banksia	attenuata, baueri, baxteri, benthamiana, blechnifolia, hookeriana, incana, lemanniana, leptophylla, oblongifolia, paludosa, quercifolia, scabrella, sceptrum, seminuda, telmatiaea	Lysiphyllum	calycina, gilvum, sparsiflora
Bossiaea	laidlawiana, linophylla	Nitraria	billardierei
Brachichiton	diversifolius	Olearia	pimeleiodes
Burtonia	polyzyga, scabra	Oxylobium	reticulatum
Daviesia	leptophylla, ulicifolia	Petrophile	drummmondii, ericifolia
Dichrostachys	spicata	Porana	sericea
Dodonaea	obulata, peduncularis, physocarpa	Senna	notabilis
Dryandra	armata, comosa, hewardiana	Sida	cardiophylla, echinocarpa
Gompholobium	latifolium	Swainsona	cyclocarpa
Gomphrena	cunninghamii, fusiformis	Templetonia	retusa
Grevillea	banksii, thelemanniana	Tephrosia	coriacea
Hakea	brownii, cinerea, decurrens, erecta, gilbertii, incrassata, lasianthoides, marginata, obtusa, pandanicarpa, prostrata, pycnoneura, scoparia	Xylomelum	angustifolium
Score 7	Plants without P in the mix we	ere the only ones t	hat grew well
Acacia	polystachya	Petrophile	sessilis
Bossiaea	dentata		

Source: Handreck 1997

 Table 42
 Phosphorus-sensitive Australian native plants.

Phosphorus-sensitive Australian native plants

Acacia baileyana, A. iteaphylla, A. obtusata, A. suaveolens, A. verticillata Banksia aemula, B. ericiflia, B. longifolia, B. robur

Beaufortia squarrosa

Boronia megastigmata

Callistemon citrinus

Grevillia aquifolium, G. glabella, G . 'Poorinda firebird'

Hakea laurina

Pultenaea pedunculata

Telopea speciosissima

Source: Leake 1996

Phosphorous sensitivity of South African Proteaceaes

Table 43 Phosphorus sensitivity of some South African Proteaceae.

Sensitivity	Proteaceae
Highly sensitive	Protea compata, P. harmeri, P. nerifolia, Leucadendron uliginosum, L. salcifolium, Leucospermum cordifolium
Moderately sensitive	Protea cyanoides, P. longifolia, P. coronata, Leucadendron coniferum, Dryandra formosa
Slightly sensitive	Protea eximia, P. speciosa, P. grandiceps, P. macrocephala, P. punctata, Leucadendron linifolium, L. orientale, L. rubrum, L. elimense, L. teratifolium, L. strobilinium, Serruria florida, Aulax pinifolia
Tolerant	Protea repens, P. roupelliaea, P. mundii, P. nana, P. obtusifolia, P. Iongifolia, Leucadendron salignum, L. procerum, L. gandogeri

Source: Leake 1996

7.10 Turf grasses and lawns – Symptom, diagnosis and solutions

Symptom or Condition	Diagnosis	Potential Solution
Tip burning, bluish-green leaves	Excess salinity in water and/ or soil	Increase leaching fraction and/or replace with more salt tolerant turf, blend with less saline water
Extensive vegetative desiccation	Insufficient irrigation	Increase duration and/or rate of water application
Localised dry and wet spots	Nonuniform irrigation patterns	Improve uniformity of application
	Surface soil compaction	Carry out soil core aeration, add organic matter such as compost
	Subsoil impermeable layers	Improve drainage with installation of subsurface drainage
	Water repellant sand-based turf	Add wetting agents and clay colloids like zeolites
Difficulties in seed germination and early seedling growth	Excessive salinity in water and/or soils	Select and plant more salt tolerant turf, blend saline water with less saline water or conduct reclamation leaching before seeding
Spotty bare spots with salt crust	Excessive salinity in soils	Conduct localized leaching to remove salts
Spotty bare spots with no salt crust	Excessive sodicity in soils	Add calcium amendments to soil and/ or water (e.g. gypsum)
Bare spots with dispersed organic matter	Excessive RSC in water	Inject acids to source water, add calcium amendment to soil or water
Uniform yellowing and senescence of older leaves	Nitrogen deficiency	Apply N fertilisers, improve drainage, aerate to relieve compaction

Symptom or Condition	Diagnosis	Potential Solution
Uniform chlorosis of younger and older leaves, leaf tips necrotic, stunted growth	Sulfur deficiency	Rare, but resembles N deficiency symptoms. Apply S containing fertiliser.
Yellowing of younger leaves and new leaves white or necrotic in severe cases	Iron deficiency	Add acid forming materials to calcareous soils, apply iron chelate or other iron fertilisers
Dark green discoloration of older leaves	Phosphorus deficiency	Apply P fertiliser appropriately broadcasting or by injection into water supply, P will tend to precipitate in calcareous soils and high bicarbonate waters
Drooping of leaves, chlorosis and leaf rolling	Potassium deficiency	Broadcast K fertiliser, incorporate into ground as much as possible
New leaves chlorotic, deformed, and stunted or necrotic	Calcium deficiency	Rare in alkaline and neutral soils
Interveinal chlorosis of older leaves or necrosis of older leaves	Magnesium deficiency	Rare in alkaline and neutral soils

Source: Tanji et al. 2007

7.11 Trees and shrubs – Symptom, diagnosis and solutions

Symptom or Condition	Diagnosis	Potential Solution
Stunted growth, chlorosis, leaf tip burn, marginal burn, defoliation, death	Excess salinity in soil and/or water	Leach soil, increase leaching fraction, select more salt tolerant plants, correct drainage problem, blend with less saline water
Stunted growth, chlorosis, necrosis, black salt crust on soil surface, water ponding	Excess sodicity in soil and/or water	Add gypsum, acid or acid forming materials to soil or water and leach
Stunted growth, chlorosis, necrosis, white salt crust on soil surface	Excess salts and sodicity	Leach salts, add gypsum, acid or acid forming materials
Stunted growth, necrosis of leaf tips and margins, bronzing, leaf drop	Excess chloride in water and/or soil	Leach or increase leaching fraction, correct drainage problem, reduce foliar wetting, select more chloride tolerant plants
Yellowing of leaf tip, necrosis of leaf margins and between veins	Excess boron in water and/or soils and/or soils	Avoid foliar wetting, leach soil, select boron tolerant plants
Mottled and interveinal chlorosis leaves, burning of growing tips	Excess sodium in water and/or soil	Avoid foliar wetting, leach soils, plant more sodium tolerant plants, inject acid into water, apply gypsum to soil
Yellowing foliage and leaf drop,, damage to buds, limbs and shoots, root crown diseases	Excess irrigation and/or poor drainage	Decrease irrigation, improve drainage and aeration
Excessive growth and succulent tissue, dark green foliar margins	Excess N fertilisation	Decrease N fertilisation

Summton of Condition	Diamasia	Detertial Colution
Symptom or Condition	Diagnosis	Potential Solution
Uniform yellowing of leaves, light green coloring, yellowish and short needles in conifers	Nitrogen deficiency	Apply N fertiliser, nutrient deficiency in woody plants are usually not caused by deficiency of soil nutrients except for container plants. Sometimes N deficiency confused with symptoms caused by restricted root growth
Bronzing of lower leaves with purple or brown spots, dieback of needles in conifers	Phosphorus deficiency	Add P fertiliser. P deficiency in woody plants is normally rare, symptoms may look like herbicide damage
Leaf spotting and sparse leaf growth, older leaves yellow, marginal necrosis along leaflets, necrosis at needle tips in conifers	Potassium deficiency	Apply K fertiliser, K deficiency is rare among conifers and broadleaf species but occurs in palms and fruit and nut trees, P deficiency may resemble leaf spot damage from sucking insects and certain pre-emergence herbicides
New foliage yellowish and undersized with green veins, causes curling and burning in palms, stunted and chlorotic needle tips in conifers	Iron and/or manganese deficiency	Noted especially in acid loving plants grown in calcareous soils, lower soil pH with acidic amendments, apply iron chelate, improve drainage and aeration
Uniformly yellow and stunted new growth may turn purplish and die, small leaves, branches and needles extremely stunted, and die back of terminals in conifers	Zinc deficiency	Apply zinc chelates or zinc sulfate, may be confused with systemic herbicide (glyphosate) damage
Yellowing of leaves, premature leaf drop, wilting, stunted growth	Poor aeration or soil aeration deficit	Improve drainage, reduce excess irrigation, conduct appropriate site preparation before planting
Dieback of youngest foliage, damage to lower leaves and canopy dieback, dieback of limbs. Rapid onset of foliar symptoms	Low temperature injury	Select more cold tolerant trees and shrubs. Protect sensitive plants during periods of low temperature
Leaf discoloration and necrosis, damage to bark and trunk	Sunburn or scalding damage	Select more tolerant plants, shade plants, irrigate adequately
Trees appears to be under water deficit, leaf necrosis and leaf drop,tattering of leaves, fewer leaves on windward side	Wind damage	Select wind tolerant species, provide wind breaks
Leaves or needles turn yellow to brown, foliage die back, stippling or specking of leaves	Air pollution injury	Select trees more tolerant to ozone, sulfur dioxide, etc

Source: Tanji et al. 2007

References

Allen R, Pereira L, Raes D, Smith M (1998) 'Crop evapotranspiration: guidelines for computing crop water requirements.' FAO56, Rome.

Anderson A, Kelly J, McKenzie D (2007) 'Healthy Soils for Sustainable Vegetable Farms: Ute Guide.' (Arris Pty Ltd: Highgate, Adelaide).

ANZECC, ARMCANZ (2000) 'Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Volume 3, Chapter 9 . Primary Industries — Rationale and Background Information (Irrigation and general water uses, stock drinking water, aquaculture and human consumers of aquatic foods).' (National Water Quality Management Strategy (NWQMS). Australian and New Zealand Environment and Conservation Council, Agriculture and Resource Management Council of Australia and New Zealand: Canberra, Commonwealth of Australia).

AS (1994) AS 1319-1994: Safety signs for the occupational environment, Standards Association of Australia, Sydney.

AS/NZS (2003) AS/NZS 3500 Plumbing and Drainage Code. Standards Australia/Standards New Zealand, Standards Australia/Standards New Zealand, Sydney and Wellington.

Asano T, Burton FL, Laeverenz HL, Tsuchihashi R, Tchobanoglous G (2007) 'Water Reuse. Issues, Technologies and Applications. Metcalf and Eddy.' (McGraw Hill.: New York, USA).

Ayers RS, Westcot DW (1985) Water quality for agriculture. FAO irrigation and drainage paper 29 rev. 1. Food and Agriculture Organisation of the United Nations. Rome, Italy.

Brady NC, Weil RR (1999) 'The Nature and Properties of Soils.' (Prentice Hall: Upper Saddle River, New Jersey).

Brugha R, Heptonstall J, Farrington P, Andren S, Perry K, Parry J (1998) Risk of hepatitis A infection in sewage workers. Occup Environ Med 55, 567-569.

Carrow RN, Duncan RR (1998) 'Salt affected turfgrass sites - Assessment and management.' (Ann Arbor Press: Chelsea Michigan, USA).

CDCDP (1993) Questions and Answers Concerning HIV Infection and AIDS Asked by Information Specialists at the CDC National AIDS Hotline AIDs Education and Global Information Systems. CDC NATIONAL AIDS HOTLINE TRAINING BULLETIN #37 - (March 25, 1993). Centers for Disease Control and Prevention., San Juan Capistrano, CA, U.S.A.

Christen E, Ayars J, Hornbuckle J, Biswas T (2006) Design and management of Reclaimed Water irrigation systems. In 'Growing crops with reclaimed wastewater'. (Ed. DP Stevens) p. Chapter 6. (CSIRO Publishing: Melbourne).

Corwin DL, Rhoades JD, Simunek J (2007) Leaching requirement for soil salinity control: Steady-state versus transient models. Agricultural Water Management 90:165-180.

CRC for WQT (2004) Blue Green Algae: A Guide. CRC for Water Quality and Treatment, Salisbury, South Australia.

Cummings D (2002) Minimising algal growth in farm dams. State of Victoria, Department of Natural Resources and Environment 2002LC0079, Melbourne.

EPA Victoria (2005) Guidelines for Environmental Management: Dual pipe water recycling schemes - Health and environmental risk management. EPA Victoria, Guidelines No., Melbourne, Australia.

EPA Victoria (1991) Guidelines for wastewater irrigation. Publication no 168. EPA Victoria168, Melbourne.

EPA Victoria (2003) Use of reclaimed water. Guidelines for environmental management. EPA Victoria Publication 464.2, Southbank, Victoria, Australia.

Glas C, Hotz P, Steffen R (2001) Hepatitis A in workers exposed to sewage: a systematic review Occup Environ Med 58, 762-768.

Handreck K, Black N (2002) 'Growing media for ornamental plants and turf.' (New South Wales University Press, Kensington.).

Handreck KA (1997) Phosphorus requirements of Australian native plants. Australian Journal of Soil Research 35, 241-289.

IAA (2006) Best practice Guidelines for Urban irrigation. Part 2. Urban Best Management Practice Guidelines. Irrigation Association of Australia.

Kelly J, Rengasamy P (2006) Diagnosis and management of soil constraints: Transient Salinity, Sodicity and Alkalinity. The University of Adelaide, Waite Campus, South Australia, Urrbrae.

Keren R, Bingham FT (1985) Boron in Water, Soils and Plants. In 'Advances in Soil Science' pp. 229-276. (Springer-Verlag Inc.: New York).

Lamont B (1982) Specialised modes of nutrition. In 'Kwongan: plant life of the sandplain'. (Eds. Pate JS, Beard JS) pp. 236-245. (University of WA Press: Nedlands).

Leake S (1996) Phosphorus and iron nutrition in Australian native plants. Society for Growing Australian Plants Journal 1, March.

Maas EV (1990) Salt, boron and chloride tolerance in plants. (United States Department of Agriculture, Agricultural Research Service) www.ars.usda.gov/Services/docs.htm?docid=8908.

Miyamoto S, Martinez I, Padilla M, Portillo A, Ornelas D (2004) Landscape Plant Lists for Salt Tolerance Assessment Texas A&M University Agricultural Research and Extension Center at El Paso, Texas Agricultural Experiment Station. El Paso Water Utilities, El Paso, Texas, USA.

NHMRC, NRMMC (2004) Australian Drinking Water Guidelines. National water Quality Management Strategy. National Health and Medical Research Council. Natural Resource Management Ministerial Council, Canberra.

NRMMC, EPHC (2006) Australian Guidelines for Water Recycling. Managing Health and Environmental Risks. Phase 1. National Water Quality Management Strategy 21. Natural Resource Management Ministerial Council. Environment Protection and Heritage Council Australian Health Ministers' Conference, Canberra, Australia.

Pettygrove GS, Asano T (Eds.) (1985) 'Irrigation with Reclaimed Municipal Wastewater - A Guidance Manual.' (Lewis Publishers: Chelsea, Michigan.).

PIC (2005) Recycled Water Plumbing Guide. Plumbing Industry Commission, Camberwell, Victoria, Australia.

Rengasamy P (2002) Transient salinity and subsoil constraints to dryland farming in Australian sodic soils: an overview. Australian Journal of Experimental Agriculture 42 (3), 351-361.

Rengasamy P, Greene RSB, Ford GW, Mehanni AH (1984) Identification of dispersive behaviour and the management of red-brown earths. Australian Journal of Soil Research 22, 413-431.

Rengasamy P, Olsson KA (1991) Sodicity and soil structure. Australian Journal of Soil Research 29, 935-952.

Rhoades JD, Kandiah A, Mashali AM (1992) 'The use of saline waters for crop production. FAO irrigation and drainage paper 48.' (Food and Agriculture Organization of the United Nations: Rome, Italy).

Rhoades JD, Loveday J (1990) Salinity in irrigated agriculture. In 'Irrigation of Agricultural Crops'. (Eds BA Steward, DR Nielson) pp. 1089-1142. (American Society of Agronomy: Madison, WI).

Stevens DP (2006) 'Growing Crops with Reclaimed Wastewater.' (CSIRO Publishing: Melbourne).

Stevens DP (Associate Ed), Unkovich MJ, Kelly J, McLaughlin M (2006) 'Growing food crops with reclaimed wastewater; An Australian Perspective.' (CSIRO Publishing: Melbourne).

Stevens DP, McLaughin MJ, Smart M (2003) Effects of long-term irrigation with reclaimed water on soils of the Northern Adelaide Plains, SA. Australian Journal of Soil Research 41, 933-948.

Sumner ME, Rengasamy P, Naidu R (1998) Sodic soils: A reappraisal. In 'Sodic Soils. Distribution, Properties, Management, and Environmental Consequences.'. (Eds. Sumner ME, Naidu R) pp. 1-18. (Oxford University Press: New York).

Tanji K, Grattan S, Grieve C, Harivandi A, Rollins L, Shaw D, Sheikh B, Wu L (2007) Salt Management Guide for Landscape Irrigation with Recycled Water in Coastal Southern California. A Comprehensive Literature Review.

Thomas D, Martinelli A (1999) Has your dam got a blue-green algae problem? State of Victoria, Department of Natural Resources and Environment (2002). Landcare. LC0098 ISSN 1329-8062, Bendigo and Melbourne.

UCCE, CDWR (2000) A guide to estimating irrigation water needs of landscape plantings in California. University of California Cooperative Extension and California Department of Water Resources.

