

Water Efficiency Research

2002 - 2016

Project Summaries

August, 2016

Smart Water Fund Water Efficiency Research

This document summarises the water efficiency and efficiency-related research initiated by the Smart Water Fund during its 15 years of operation since its establishment in 2002. Water efficiency is here taken to refer to practices that maximise the benefits gained from every unit of water consumed.

Smart Water Fund is a joint venture between the Victorian Government, Melbourne Water, City West Water, Yarra Valley Water and South East Water. The Fund invests in research that addresses the shared challenges and risks of the Victorian water industry. This research is for the benefit of the entire Victorian water industry.

With this in mind, the purpose of this document is to highlight the full suite of water efficiency research the Fund has instigated. This summary provides opportunities to utilise existing efficiency research for the benefit of the water industry and its customers. It is hoped that documenting these projects can help the water industry achieve immediate water efficiency goals, avoid duplication of effort, and identify new opportunities to build on existing knowledge and datasets of the future.

The research projects in this document are grouped into three categories. The first category (pages 3 to 8) is the full list of water-efficiency-specific projects the Fund has instigated. Two categories of research projects that are complementary to water efficiency follow. These are grouped under 'augmenting supply' (pages 9 to 12) and 'planning and water resource management' (pages 13 to 15).

Each project summarised below is hyperlinked to the relevant Smart Water Fund resource library web page. Full project case studies, final reports and related content can be accessed via these pages. One or more sub-themes are listed for each project in this document to make it easier to sort through the research. These sub-themes are:

- Efficient technologies
- Irrigation
- Residential insights
- Commercial insights
- Best practice
- Integrated water management (IWM)
- Water Sensitive Urban Design (WSUD)

- Planning
- Rainwater
- Stormwater
- Wastewater
- Water recycling
- Customer behaviour
- Asset management
- Conservation

Water Efficiency Research Projects

Project	Sub-themes	Description
Optimising Open Space	Irrigation	This project developed the <i>Best Practice Guidelines for Functional Open Space</i> . These take the form of
Management	Best practice	a toolkit designed to assist open space managers and field staff achieve functional and sustainable
(11SW4)	Efficient technologies	green space by using water very efficiently. The Guidelines cover:
		The most water efficient technologies and how to apply
		Social and environmental benefits of improved open spaces
		Developing business cases for the application of open spaces
National Business Water	Commercial insights	The National Business Water Efficiency Benchmarking project (NBweb) allows business customers & the
Efficiency Benchmark		water suppliers to benchmark business customer water usage. The tool can:
(9TR2-014)		 Enable businesses to compare their water use to industry averages
		Identify their own ways to use water in the most efficient manner and save costs
		Enable water suppliers to share their experience and pool resources
Improving Water	Residential insights	Two field trials were conducted for this project that used 50 residential and 50 non-res evaporative
Efficiency in Evaporative	Commercial insights	coolers to establish the water efficiencies of these units in operation. The results of the trials were
Coolers	Best practice	combined with knowledge of the state wide installed base and current installation practices to produce
(72M-7091)		total estimates of water use and to identify potential savings. Findings were then used to develop best
. ,		practice guidance for residential and non-residential customers on the operation and maintenance of
		evaporative coolers.

Project	Sub-themes	Description
Water Efficient Bed Pan	Efficient technologies	This project promoted water efficiency through best practice for bed pan sanitisation. After use, bed
Sanitizer Units within	Best practice	pans are washed and sterilised by sanitiser units that previously used 45 litres per cycle. The new
<u>Hospitals</u>		sanitiser units developed in this project clean bed pans in a much more efficient manner.
(72R-7006)		
Recycling Greywater in	Commercial insights	In this project, modifications were made to two large commercial washers, Continuous Batch Washers, to
Continuous Batch	Greywater	recycle greywater. There was a significant reduction in water usage immediately following the
Washers		commissioning of these machines.
(72R-7072)		
Sustainable Water Use at	Rainwater harvesting	The final outcome was the completed upgrade of a Tamil Temple with clever design that adopts
Tamil Temple	WSUD	environmentally sustainable principles to provide a practical demonstration to its members and the
(72R-7030)	Greywater	broader community of how to embed the efficient use of water in community assets.
Assessment of Clean in	Best practice	This project developed the <i>Clean in Place Best Practice Guidelines</i> . These Guidelines are a support tool
Places in Food Businesses	Commercial insights	for medium to large sized food businesses. The Guidelines look to optimise the Clean in Place systems
in Melbourne	Efficient technologies	to enable commercial cleaning practices to be as water efficient as possible.
(62M-2039)		
Innovative Water	Irrigation	This project demonstrated a number of water saving and recycling technologies that utilised stormwater
Conservation and	Water conservation	capture and reuse and incorporated innovative sub-surface irrigation systems rarely used in the bowls
Irrigation Systems for	Stormwater harvesting	sector. The final fully integrated water conservation plan for the Blackburn Bowls Club eliminated the
Grass Bowling Greens	Water recycling	need for potable water for all non-drinking water applications and was expected to save the club 1.2
(52M-2080)		million litres of water a year.

Project	Sub-themes	Description
Construction of a	Efficient technologies	This project trialled the use of alternative harness racing track surface materials to determine their
Waterless Equine Racing		effectiveness at reducing water demand while remaining acceptable for horse training and racing
Track		purposes.
(52R-2018)		
Net Zero Water Use	Commercial insights	A water recycling system was designed and installed at Cadbury Schweppes in Ringwood. The system
Project at Cadbury's	Efficient technologies	reduced the volume of water consumed by the vacuum pumps at the plant. Water savings are around
Ringwood Plant		5.5 million litres of water per year. Return on investment for the \$25,000 project cost has been delivered
(52M-2086)		through reduced water costs and reduced trade waste charges.
Replacing Cooling	Water conservation	This project designed and trialled a new waste heat rejection system to replace cooling towers in power
Towers to Conserve	Commercial insights	stations and large air-conditioning systems. This project demonstrated that compact polymer heat
Water		exchangers can be used to replace cooling towers in power stations and large air-conditioning
(52M-2108)		systems. The findings from the project open the path to major water savings.
Best Practice Water Use	Commercial insights	The project consisted of an audit of the Victorian Spa Industry to understand current water usage across
Guidelines for the Health	Water recycling	the industry and allow for the development of water efficiency guidelines. Potential water saving
<u>Spa Industry</u>	Efficient technologies	measures were identified, including installing water efficient equipment, recycling and reusing water, and
(42R-2018)		adopting more water efficient practices.
Beckley Park	Efficient technologies	The project implemented and trialled a variety of initiatives in order to make the Beckley Park racing
Conservation Project		track facility less reliant on mains potable water, including upgrading to water efficient appliances,
(42R-2021)		installation of a wastewater re-use system and installation of a 110 kL rainwater tank.

Project	Sub-themes	Description
Water Conservation in	Greywater	The purpose of this project was to incorporate water saving measures into the building design of
the Bendigo Bank Head	Water recycling	Bendigo Bank's head office to reduce demand on potable supplies in highly stressed catchments. The
<u>Office</u>	Efficient technologies	project will conserve an estimated 4.5 million litres of potable water and a considerable quantity of
(42R-2031)		landscape irrigation water each year.
Drought Proofing Tennis	Efficient technologies	This project trialled two new technologies unique to the Australian tennis industry that have the
<u>in Victoria</u>		potential to reduce water use on red porous courts by at least 50 per cent. These water saving
(42M-2023)		technologies were demonstrated to have the potential to save between 300-450 litres, per court, per
		day, which is approximately 300-600 million litres of water per year.
Rainwater and Water	Residential insights	The project has involved the production of a book that is focused on the practical methods of using
Recycling Options for the	Rainwater harvesting	rainwater and recycled water onsite. Through the application of the methods and technologies
Home	Efficient technologies	described in the book, householders will be able to minimise their reliance on centralised mains water
(42M-2033)		supplies.
A Toolkit to Minimise	Commercial insights	This project developed a 'toolkit' to provide useful information for small to medium scale food
Water Use in Small Scale	Best practice	manufacturing businesses on how to plan and implement water efficiency and conservation initiatives.
Food Processing	Efficient technologies	
(42M-2047)		
Water Smart Tourism –	Efficient technologies	This project demonstrated the benefits of regional motel businesses implementing water saving
Saving Water in Regional	Commercial insights	technologies in accommodation premises through the water audit, retrofitting water efficienct
<u>Motels</u>		appliances, monitoring and assessment of water and cost savings for 8 motels in different regions across
(42R-2035)		Victoria. The project achieved approximately 3.75 million litres per year of potable water from the 8
		case study motels.

Project	Sub-themes	Description
Collection, Treatment and	Irrigation	This project saw the installation of a unique recycling system that collects, treats, stores and reuses
Reuse of Nursery Runoff	Water recycling	rainwater and irrigation run-off water for irrigation purposes at a large scale seedling production nursery
Water	Efficient technologies	which is one of the largest uses of water in Hamilton.
(42R-2036)		
Market Garden Fully	Irrigation	The aim of this project was to install a new fully automatic watering system in a 28 acre market garden
Automated Watering	Efficient technologies	near Horsham, exclusively using surface and sub surface dripper tape.
<u>System</u>		
(32R-3000)		
How to Achieve Water	Residential insights	The aim of this project was to encourage adoption of water efficiency measures in the residential sector.
Savings of 80% in	Efficient technologies	Deakin University was funded to study water use and conservation in a sustainable designed house in
Residential Buildings	Greywater	Geelong. The design incorporated rainwater harvesting and treated greywater systems and achieved a
(32R-3001)	Rainwater harvesting	64% reduction in the use of potable water.
Innovative Water	Commercial insights	The project retrofitted the main batch washing system in a large commercial laundry to conserve water.
Optimisation in Hospital	Efficient technologies	The project achieved a total annual water consumption reduction of 43% and a reduction in trade waste
Laundry Operations		of 54%.
(32R-3003)		
Development and Testing	Efficient technologies	A prototype smart shower meter was developed and tested to determine whether users, when given
of a Smart Shower Meter	Residential insights	real-time feedback, would make significant reductions in their water usage. A six-month trial in
(1021)		Melbourne demonstrated an average of 14.8 per cent reduction in shower water consumption among
		households who trialled the device.
Development and Testing of a Smart Shower Meter (1021)	Efficient technologies Residential insights	A prototype smart shower meter was developed and tested to determine whether users, when given real-time feedback, would make significant reductions in their water usage. A six-month trial in Melbourne demonstrated an average of 14.8 per cent reduction in shower water consumption among households who trialled the device.

Project	Sub-themes	Description
Replacing Courts with	Efficient technologies	Smart Water Fund allocated funds towards the construction of a waterless tennis court demonstration
Classic Clay for Water		site. The project demonstrated that with a 35% conversion of existing porous red courts to 'classic clay'
<u>Savings</u>		around 500 million litres of potable water could be saved each year in Victoria.
(1027)		
Installation of Waterless	Commercial insights	This project helped Cadbury Schweppes replace a water based lubricant system of conveyor belts with a
Conveyer Technology	Efficient technologies	belt system that eliminated the use of water in its operation The project has saved up to 21.6 million
(1132)		litres of water and wastewater.
Evaluation of Saline	Irrigation	This project evaluated new turf grasses to identify those that would be suitable for irrigation with
Tolerant Grasses and		reclaimed water. This was achieved by undertaking trials at sites subject to different climatic conditions,
Reclaimed Water Use for		soils and water qualities. The results indicated that C_4 grasses (couch, kikuyu, Paspalum, Zoysia) use on
Golf Courses		average 25-30 percent less water than other types of grasses.
(1133)		

Complementary research: Augmenting supply

Project	Themes	Description
Stormwater Treatment	WSUD	The overarching objective of this project is to improve the planning and design of future stormwater
Requirements for Dual	Stormwater	harvesting systems by better understanding stormwater hazards and determining the roles passive
Pipe Use		treatment systems can play in mitigating these hazards. The project is using the Troups Creek wetland
(10TR12-001)		(Narre Warren) as a case study. Research from the monitoring program at the wetland is focusing on:
		Characterisation and quantification of human health hazards
		Understanding key sources of these hazards
		• Understanding the potential of wetland processes to reduce sediment and pathogen levels
Survey of Condition and	Rainwater harvesting	This project examined the condition of residential rain water tanks across Melbourne and the estimated
Savings from Rainwater	Residential insights	water savings and related stormwater benefits these private assets provided. A condition survey of 417
Tanks	Stormwater	household rainwater tanks was conducted, along with a metering study of 21 systems. Important results
(10TR4-001)		from the research include:
		nine per cent of all sites had faulty electronic diverters
		• 57 per cent of water samples had some level of discoloration
		• 12 per cent of sites had mosquito larvae or mosquitoes present in the tank and water.
		 rainwater use at different sites varied considerably depending on the setup.
Trial of Cross	Recycled water	This project was run in two parts. The first part developed a miniaturised low cost high accuracy
Connections Sensor	Asset Management	electrical conductivity (EC) sensor with software to detect cross connections. Results from the trials
(8OS-8014)		confirm the EC devices are capable of accurately and quickly detecting cross-connections and small
		variations in source water quality.

Project	Themes	Description
Trial of Cross	Recycled water	The second part of this project developed a small scale, low cost sensor using UV fluorescence as an
Connections Sensor	Asset Management	alternative indicator. The final UV fluorescence prototype was able to detect cross-connections of less
(8OS-8014a)		than 1% recycled water in the potable water supply and was demonstrated to work effectively in two
		field trials.
Hospital Operations save	Wastewater	This project demonstrated an innovative reuse of wastewater from the Bacchus Marsh and Melton
H2O for Fire Fighting	Water conservation	Hospital steam sterilisation units for CFA fire-fighting activities and training. Water recovery rates from
Operations		the hospital exceed 5,000 litres per day.
(62R-2007)		
Reducing Water	Water conservation	This project was a trial of a water recycling system to reduce non-metered water usage for fire-fighting
Consumption for Fire	Water recycling	training. The recycling system has the potential to save up to 60 million litres of water a year.
Fighting Training by		
Recycling Water		
(52M-2027)		
Surplus Water Collection	Stormwater harvesting	This demonstration project captured water runoff from the Graincorp Berriwillock silo site and directed it
for Community Sporting		to a holding dam for reuse at various sporting and recreational facilities within Berriwillock. This reuse
Facilities		supplies 3.0 – 3.5 million litres of water annually, meeting the 2.1 million litre supply requirements of
(52R-2011)		water for the sporting facilities
Water Recycling and	Water recycling	This project developed and installed a recycled water processing system at a car wash facility in
Reuse within Car Wash	Greywater	Traralgon. Concentrations of all water quality parameters measured at the facility were lower than the
Facilities	Commercial insights	average value measured of other car wash facilities.
(42R-2015)		

Project	Themes	Description
Knox Leisure Works Pool	Water recycling	Funding from this project saw the design, development and trial of a system to reuse pool backwash
Backwash Recycling and		water for irrigation of sports grounds to save up to 18 million litres of water a year and effectively
Reuse		drought-proof one of Knox's top sporting grounds. This has potential benefit for other aquatic centres
(32M-2046)		and sports grounds considering similar applications.
Smart Water not Mains	Rainwater harvesting	Development of practical approaches that will result in significant reductions in mains water reliance for
Water for Urban	Wastewater	the gardens at CERES. The project demonstrated the safe and effective reuse of treated wastewater and
<u>Communities</u>		harvested rainwater in garden irrigation utilising large scale harvesting of rainwater from sub-surface
(32M-2076)		storage.
Urban Wastewater Reuse	Commercial insights	This project investigated the commercial viability and social acceptance of utilising Class C recycled
and Integrated Aquatic	Recycled water	water for the production of fish using aquaculture technologies. It was found that the system rested on
<u>Production</u>		a number of variables including the price of Class C recycled water, fish harvest yields and tapping into
(32R-3007)		existing commercial supply chains.
Smart Water Schools in	Rainwater harvesting	Funding was provided for 3 schools in the Bendigo region to develop a range of effective water saving
<u>Bendigo</u>		strategies including the development of water-wise gardens. The project also informed curriculum units
(32R-3029)		of study and community awareness programs focused on water savings.
Steriliser Water	Greywater	This project looked at reusing wastewater from steriliser machines at 3 metropolitan hospitals. The
<u>Conservation</u>	Water conservation	machines were connected to the water supply line of the reticulated air conditioning systems at the
(1008)		hospitals. This solution has saved over 20 million litres of water a year and reduced the hospitals' water
		bill and sewerage costs by approximately \$24,000 per year.

Project	Themes	Description
Water Harvesting and	Rainwater harvesting	This project implemented a rainwater harvesting and greywater reuse system at Victoria's State Netball
Reuse System for	Greywater	Hockey Centre in Parkville. Rainwater collected from pitch areas and roofing is stored in four 45 kilolitre
Victoria's State Netball		underground tanks for use on two synthetic wet hockey pitches. This intervention has saved around 24
Hockey Centre		million litres of drinking water every year.
(1181)		
Waste Not Want Not: a	Wastewater	Installation of a new wastewater treatment facility for a 33-story office building in the Melbourne CBD.
New Design to Reduce		Sewage is directed to a blackwater treatment plant, treated, and then pumped to a holding tank on the
Water Consumption		roof for reuse as toilet-flushing water. The savings can exceed 97,000 litres per day.
(123)		
Lessons for Car Washes	Water recycling	This project designed and implemented wash water recycle equipment at a high volume commercial car
(147)	Greywater	wash complex in Melbourne. The research demonstrated that the benchmark standard for key water
	Commercial insights	quality requirements for recycled water can be met or exceeded.
Testing Household	Greywater	This project tested the usability and associated risks of six greywater systems for homeowners. The
Greywater Treatment	Residential insights	project consisted of onsite trials of the 6 systems that reduced household water consumption by
Systems		approximately one third, and a market survey of 120 members of the Alternative Technology Association
(193)		that found 88 per cent of respondents were motivated to adopt greywater systems.

Complementary research: Water resource planning and management

Project	Themes	Description
Urban Water Cycle Planning Guide (10TR2-001)	IWM WSUD Stormwater harvesting	This project developed the <i>IWCM Developer Guide</i> : a step-by-step support tool for developers, consultants and planners to ensure they are incorporating whole-of-water-cycle management into the design of new urban developments. The Guide aims to maximise the efficient use of water on site and at a local scale, taking into consideration water harvesting and recycled water opportunities as part of the servicing strategy of the local area
Melbourne Residential Water Use Reports (10TR5-001)	Residential insights Planning	This project provided a detailed and comprehensive picture of Melbourne's residential water use fro, 2010 - 2012. It tested two different methods to understand Melbourne's residential water use to test existing calculation methodologies. The research included a stock survey of all major water-using appliances and the associated pattern of use through home visits and a questionnaire. The final reports from the project provide a unified understanding of water use in Melbourne households that can be used for metro-wide planning purposes.
Water-Energy-Carbon Links in Households and Cities (9TR1-001)	Residential insights Efficient technologies	 This research addresses knowledge gaps around water-related energy use in households and the interrelationship between water, energy, greenhouse gas emissions, and related costs. The results assist in understanding how changes in technology uptake or behaviour influences water use, energy use, carbon emission and costs to households. The research: Quantified and modelled water-energy-carbon links at the household level Calibrated these against metered energy and water consumption Identified implementation pathways for improved management of the energy-water nexus

Project	Themes	Description
Assessment of Potential Impacts on the Sewage System by Advanced Water Efficiency Measures (8TR4-006)	Asset management	 This research aimed to better understand the practical limits that the conventional sewerage system in Melbourne places on water efficiency investment. It is important as it tested assumptions regarding the impact of advanced water efficiency measures on the sewerage system and whether there was a limit to water efficiency investment. Some of the specific conclusions were: There has been an overall decrease in wastewater flows since 1995 Frequency of blockage will increase as uptake of water efficiency initiatives increases A number of emerging technologies could potentially assist in mitigating the impacts
<u>Alternative Water Atlas</u> <u>for Melbourne</u> (8TR1-002)	Planning Alternative water IWM	The primary objectives of this project were to explore, quantify and cost the opportunities for alternative water sources across Melbourne. The analysis provided an insight into the potential opportunity for alternative water sources across Melbourne. It produced a spatial planning tool (the Atlas) that can match the needs of users with these alternative water sources users.
Options Assessment Framework (8TR5-003)	Planning IWM	 The Options Assessment Framework was developed to assist the Melbourne metropolitan water industry in planning for the future. It draws together three key streams of thinking: Characterising uncertainties as trends or shocks for better response to their impacts Identifying scenario paths that consider balancing supply and demand Developing investment strategies that set a hierarchy for the measures
Water Usage and Savings for Aquatic Systems (52M-2110)	Best practice	Research and analysis of water use in aquatic facilities was conducted to develop industry wide strategies and benchmarks for the most efficient use of water. The research was an important component in the development of the <i>Indoor Aquatic and Recreation Development Guidelines</i> .

Project	Themes	Description
Recycled Water	Recycled water	This project assessed the barriers to adoption of recycled water use in the horticulture industry and
Handbook for the	Best practice	determined its specific needs regarding water reuse and recycled water irrigation schemes. It culminated
Amenity Horticulture	Irrigation	in a handbook that provides designers and managers of amenity horticulture with information to
Industry		implement recycled water projects.
(42M-2026)		
Pricing for Water	Non-residential	The purpose of this research project was to further advance collective knowledge of the non-residential
Conservation in the Non-	Customer behaviour	sector in Melbourne. It produced alternative pricing frameworks and suggested structures designed to
Residential Sector		improve water conservation in various segments of non-residential sectors.
(313-002)		
Savings in the City –	Best practice	Research from this project produced the <i>Savings in the City</i> toolkit that provides support and tools to
Green Hotels	Commercial insights	help hotels make water, waste and energy savings. It would be particularly useful for water industry
(32M-2007)		practitioners designing programs for this target audience.
Best Practice Program for	Best practice	To help the laundry industry improve its water efficiency a <u>Best Practice Manual for Laundries</u> was
the Laundry Industry	Commercial insights	developed to demonstrate to the industry that significant reductions in water use are viable and
(1072)		achievable.
Victoria Bakeries Water	Best practice	This project developed the Smart Water Practice Guide that provides practical advice on actions bakers
Use Best Practice	Commercial insights	can take to save water and money through simple changes in bakery practices, which involve little or no
(1170)		capital investment.

